

Estatística Aplicada Prof. Simões Testes com um fator

NOVA

= 1

Conceituação

 O teste ANOVA permite avaliar se as diferenças observadas entre as médias de três ou mais grupos são estatisticamente significantes.

Conceituação

- As condições para a aplicação do teste são
 - As amostras devem ser aleatórias e independentes
 - A distribuição deve ser normal ou aproximadamente normal
 - A variância de cada população deve ser a mesma
- É baseada em duas avaliações:
 - A variabilidade "entre", s_b, "b" de "between": é a avaliação matemática da diferença entre as amostras avaliadas
 - A variabilidade "dentro", s_w, "w" de "within": é a avaliação matemática das diferenças dentro de cada amostra avalida

1. Estabelecer as hipóteses

 $H_0: \mu_1 = \mu_2 = \mu_3$, etc

*H*₁: No mínimo uma amostra é diferente

- 2. Estabelecer o valor crítico
 - É obtido usando a tabela F, que utiliza 2 graus de liberdade e o valor da significância:

$$Gl_{num.} = k - 1$$

 $Gl_{den.} = N - k$

k = número de amostras

 $N = n_1 + n_2 + n_3 + \cdots$ (soma dos tamanhos das amostras)

- Estabelecer o valor crítico (cont.)
 - Por exemplo, suponha que as turmas avaliadas tenham 14, 13 e 16 alunos respectivamente, e a significância desejada seja de 5%.

$$Gl_{num.} = k - 1 = 3 - 1 = 2$$

 $Gl_{den.} = N - k = (14 + 13 + 16) - 3 = 40$ $F_{crítico} = 3,23$
 $\alpha = 0,05$

Tabela F

- O uso de sites ou de planilhas pode ser conveniente para a determinação de valores de F
 - Exemplo de site

http://www.statdistributions .com/f?p=0.05&df1=2&df2= 40

• Exemplo no Excel

	В	С
34	Prob=>	0,05
35	Gl1=>	2
36	Gl2=>	40
37	F	=INV.F.CD(C34;C35;C36)

Comando

	B	C
34	Prob=>	0,05
35	Gl1=>	2
36	Gl2=>	40
37	F	3,232

Resultado

3. Estabelecer o valor de teste

$$s_b^2 = \frac{\sum n_i \cdot (\bar{x_i} - \bar{x})^2}{k - 1}$$

$$F_{teste} = \frac{\frac{S_b^2}{s_b^2}}{\frac{S_b^2}{s_w^2}}$$

$$s_w^2 = \frac{\sum (n_i - 1) \cdot s_i^2}{N - k}$$

 $s_b^2 \Rightarrow$ variância entre $s_w^2 \Rightarrow$ variância dentro $n_i \Rightarrow$ número de elementos de cada amostra $x_i \Rightarrow$ média de cada amostra $\overline{x} \Rightarrow$ média de todos os elementos da amostra $k \Rightarrow$ número de amostras

 $N \Rightarrow$ número total de elementos

- 4. Fazer a comparação
 - Assim com nos demais testes, o valor do F_{teste} será comparado com o valor do $F_{crítico}$, o que definirá se a H_0 deve ou não ser aceita, ou seja, se as médias entre os grupos são ou não estatisticamente iguais

Exemplo

- Três catalisadores estão sendo comparados para aplicação em um processo, quanto ao tempo de reação. Foram feitos ensaios, obtendo-se os valores indicados na tabela abaixo, em minutos. Determine, com uma significância de 5% se há ou não diferença estatisticamente significativa entre os três.
 - Resolução manual
 - Resolução usando Excel

Catalisador 1	Catalisador 2	Catalisador 3
10	6	14
8	9	13
5	8	10
12	13	17
14		16
11		

1. Hipóteses

 $H_0: \mu_1 = \mu_2 = \mu_3$ $H_1:$ No mínimo uma amostra é diferente

2. Valor crítico

$$Gl_{num} = 3 - 1 = 2$$

 $Gl_{den} = N - k = 15 - 3 = 12$
 $\alpha = 5\% = 0.05$
 $F_c = 3.89$

		$\alpha = 0.05$	
	g.l. _N : Graus o	de liberdade	e, numera
g.l. _D : Graus de liberdade, denominador	1	2	3
1	161,4	199,5	215,7
2	18,51	19,00	19,16
3	10,13	9,55	9,28
4	7,71	6,94	6,59
5	6,61	5,79	5,41
6	5,99	5,14	4,76
7	5,59	4,74	4,35
8	5,32	4,46	4,07
9	5,12	4,26	3,86
10	4,96	4,10	3,71
11	4,84	3,98	3,59
12	4,75	3,89	3,49
13	4,67	3,81	3,41

3. Valor de teste

$$F = \frac{s_b^2}{s_w^2}$$

	Catalisador 1	Catalisador 2	Catalisador 3	
	10	6	14	
	8	9	13	
	5	8	10	
	12	13	17	
	14		16	
	11			
n	6	4	5	
Média	10,00	9,00	14,00	
Variância	10,00	8,67	7,50	
Média geral				11,07

$$s_b^2 = \frac{\sum n_i \cdot (\overline{x_i} - \overline{\bar{x}})^2}{k - 1}$$

$$s_b^2 = \frac{6 \cdot (10 - 11,07)^2 + 4 \cdot (9 - 11,07)^2 + 5 \cdot (14 - 11,07)^2}{3 - 1}$$

 $s_b^2 = 33,47$

• Valor de teste (cont.)

$$s_w^2 = \frac{\sum (n_i - 1) \cdot s_i^2}{N - k}$$

	Catalisador 1	Catalisador 2	Catalisador 3	
	10	6	14	
	8	9	13	
	5	8	10	
	12	13	17	
	14		16	
	11			
n	6	4	5	
Média	10,00	9,00	14,00	
Variância	10,00	8,67	7,50	
Média geral				11,07

$$s_w^2 = \frac{(6-1)\cdot 10 + (4-1)\cdot 8,67 + (5-1)\cdot 7,5}{15-3}$$

$$s_w^2 = 8,83$$

$$F = \frac{s_b^2}{s_w^2} = \frac{33,47}{8,83} = 3,79$$

• Conclusão

 F_{teste} está na região de aceitação de H_0 . Portanto, as médias podem ser consideradas estatisticamente iguais

- 1. Habilitar as ferramentas estatísticas (se necessário)
 - Ir em Arquivo > Opções > Suplementos, e na janela Gerenciar:
 Suplementos do Excel, clicar em Ir...

Barra de Ferramentas de Acesso Rápido	MICLOSOFL Data Strea	amer for excer	C:\astreamenore	
r	Microsoft Power Ma	p for Excel	C:\ Add-in\EXCEI	
Suplementos	Microsoft Power Pive	ot for Excel	C:\\PowerPivotEx	
Central de Confiabilidade	Solver		C:\\Library\SOLV	
	Suplementos Relac	ionados a Documento		
	Sem Suplementos R	elacionados a Documento		
	Suplementos de Ap	licativo Desabilitados		
	Com Cuntamantas da Anticativa Dasabilitad			
	Supremento:	Ferramentas de Analise		
	Editor:	Microsoft Corporation		
	Compatibilidade:	Nenhuma informação de	compatibilidade di	
	Local:	C:\Program Files (x86)\M	icrosoft Office\root\	
	Descrição:	Fornece ferramentas de a	análise de dados par	
	Gerenci <u>a</u> r: Suplem	entos do Excel	<u> </u>	

2. Na tela que surgirá, escolha **Ferramentas de Análise**, e clique em **OK**

3. De volta à planilha, no menu **Dados** da barra de menus, haverá agora o botão **Análise de Dados**. Clicar nele.

4. Na janela que surgirá, escolher a ferramenta de análise Anova: fator único

Análise de dados	?	\times
<u>F</u> erramentas de análise	OK	
Anova: fator único	OIL	
Anova: fator duplo com repetição	Cance	lar
Anova: fator duplo sem repetição		
Correlação	Aind	-
Covariância	Ajua	а
Estatística descritiva		
Ajuste exponencial		
Teste-F: duas amostras para variâncias		
Análise de Fourier		
Histograma		

Obs.: vale observar a grande variedade de funções estatísticas no Excel, muitas delas também presentes no Google Spreadsheets

5. Na janela que surgirá, informar as colunas com os dados, a área de saída e a significância. Clique em **OK**

Anova: fator único

	А	В	С	D	Entrada
1					Intervalo de <u>e</u> ntrada
2					Agrupado por:
3					
4		10	6	14	<u>R</u> ótulos na prim
5		8	9	13	Alfa: 0.05
6		5	8	10	
7		12	13	17	Opcões de saída
8		14		16	
9		11			Intervalo de salo
					\sim

Entrada Intervalo de <u>e</u> ntrada: Agrupado por: <u>R</u> ótulos na primeira linha Alfa: 0.05	\$B\$4:\$D\$9 € Colunas Linhas	OK Cancelar <u>A</u> juda
Opções de saída Intervalo de saída: Nova planilha: Nova pasta de trabalho 	\$F\$4	

?

 \times

6. Os resultados serão informados

RESOLUTO				
Grupo	Contagem	Soma	Média	Variância
Catalisador 1	6	60	10	10
Catalisador 2	4	36	9	8,67
Catalisador 3	5	70	14	7,5

ANOVA

RESUMO

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	66,9	2,0	33,5	3,79	0,053	3,885
Dentro dos grupos	106,0	12,0	8,83			
Total	172,9	14,0				

 Observe que é possível identificar as colunas e agregar várias outras funções como média, variância, etc, que podem ser úteis em um estudo/relatório mais completo.

Exercício

 Três equipes foram treinadas para a montagem de um produto utilizando métodos diferentes. Foram feitas montagens de teste para avaliar se há ou não diferença na eficiência entre os métodos, e os resultados estão abaixo. Determine se há ou não diferença significativa, usando uma significância de 1%

Método 1	Método 2	Método 3
12	16	14
15	14	17
17	21	20
12	15	15
	19	

Resultados

 Conclusão: não há evidência para concluir que a eficência dos métodos são diferentes, já que o valor de teste está na região de aceitação da hipótese nula

RESUMO

Grupo	Contagem	Soma	Média	Variância	
Método 1	4	56	14	6	
Método 2	5	85	17	8,5	
Método 3	4	66	16,5	7	

ANOVA

Fonte da variação	SQ	gl	MQ	F		valor-P	Fс	rítico
Entre grupos	21,92	2	10,96	1	1,50	0,269		7,56
Dentro dos grupos	73	10	7,3		1,5	0 < 7	,5	6
Total	94,9	12						