UC Fenômenos elétricos, magnéticos e oscilatórios

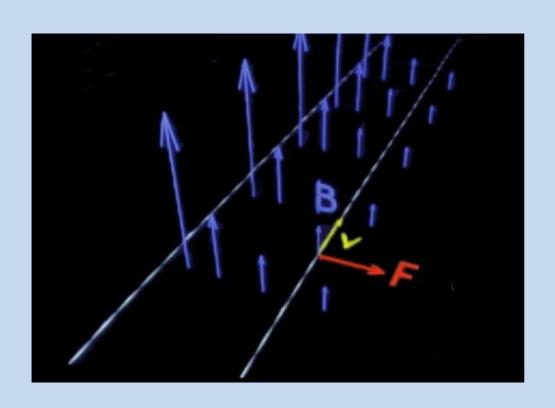
Eletromagnetismo: introdução - partículas carregadas sujeitas a um campo magnético

Prof. Simões

Ao final dessa aula você será capaz de:

Entender a natureza e tipos de magnetismo: diamagnetismo, paramagnetismo, ferromagnetismo

Compreender o que é permeabilidade magnética e seu efeito na força magnética e na histerese


Relacionar a direção da força em uma partícula com sua velocidade e o campo magnético que ela atravessa

Calcular o módulo, direção e sentido da força

Prever a trajetória da partícula carregada ao atravessar um campo magnético

Problema típico

• Seja uma carga de 15 μ C viajando a uma velocidade \vec{v} , num campo magnético \vec{B} descritos abaixo. Calcule o vetor força à qual ela está sujeita.

$$\vec{v} = (35\hat{i} + 50\hat{j} + 75\hat{k})\frac{m}{s};$$

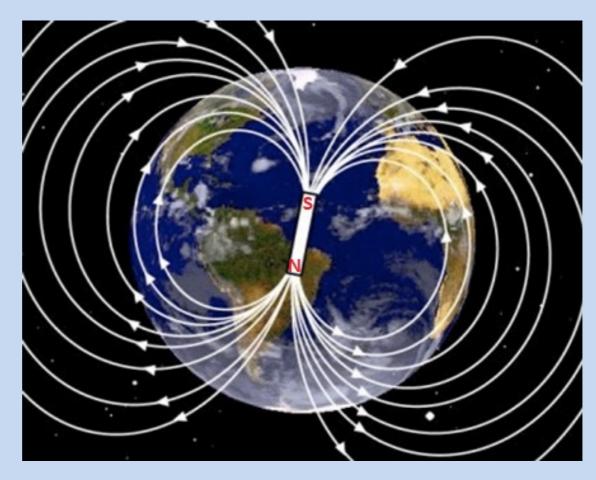
$$\vec{B} = (0.7\hat{i} + 1.2\hat{j} + 0.8\hat{k})T$$

Primeiras observações do magnetismo

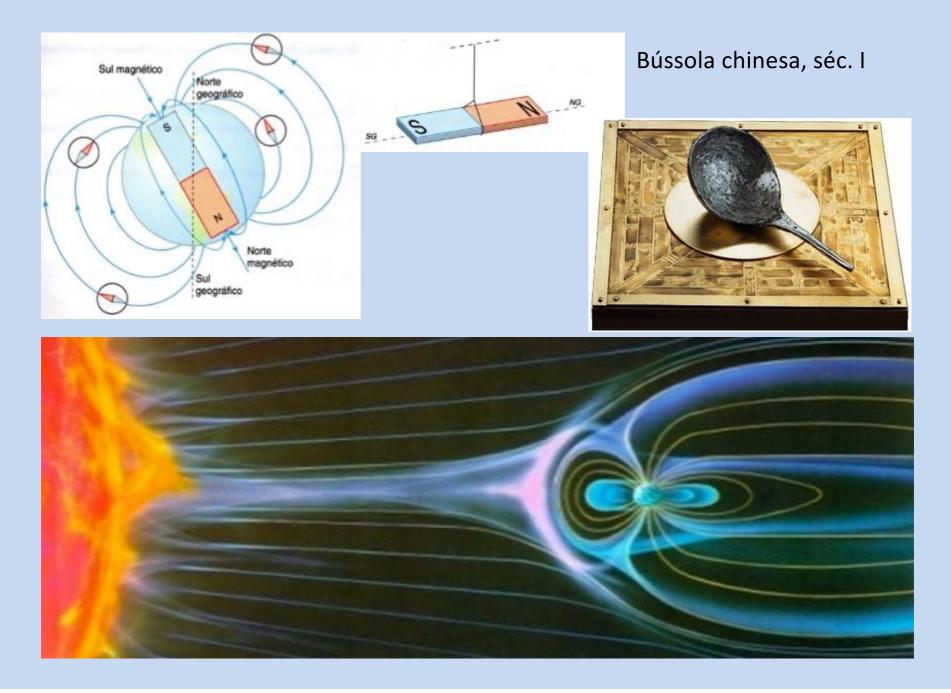
- Foi Tales de Mileto, no século VII a.C. que observou que certo minério da região da Magnésia, província grega, tinha a capacidade de atrair pedaços de ferro.
- O minério é a magnetita, imã natural.

Imãs naturais e artificiais

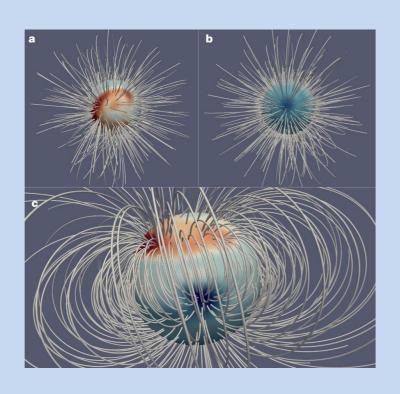
 Imãs naturais são constituídos por magnetita, um composto de óxido de ferro (Fe₃O₄)


 Imãs artificiais são produzidos com materiais ferromagnéticos magnetizados por atrito ou indução magnética

Campo magnético e linhas magnéticas


Campo magnético de um imã

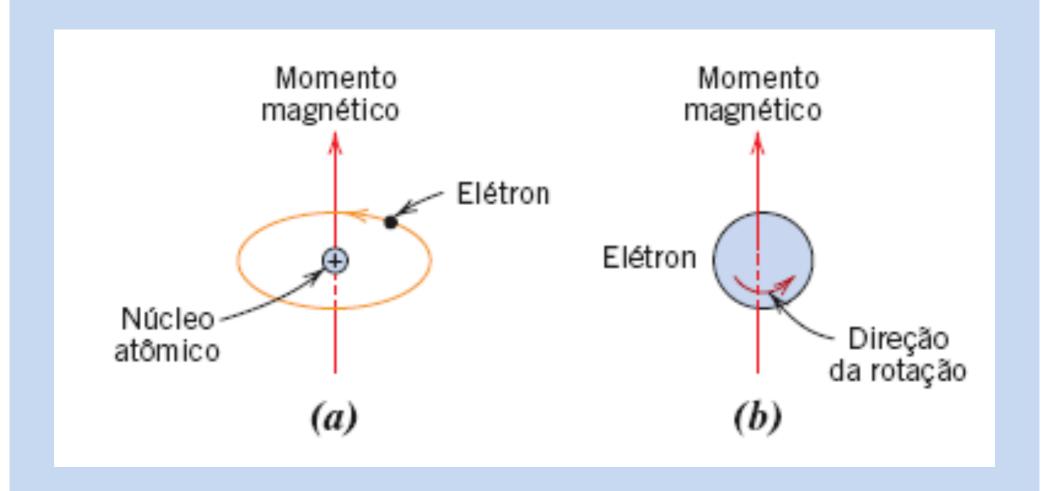
Campo magnético da Terra. Observe que o Polo Norte geográfico, corresponde ao polo sul magnético.


https://www.youtube.com/watch?v=4RzcxDgBxaY

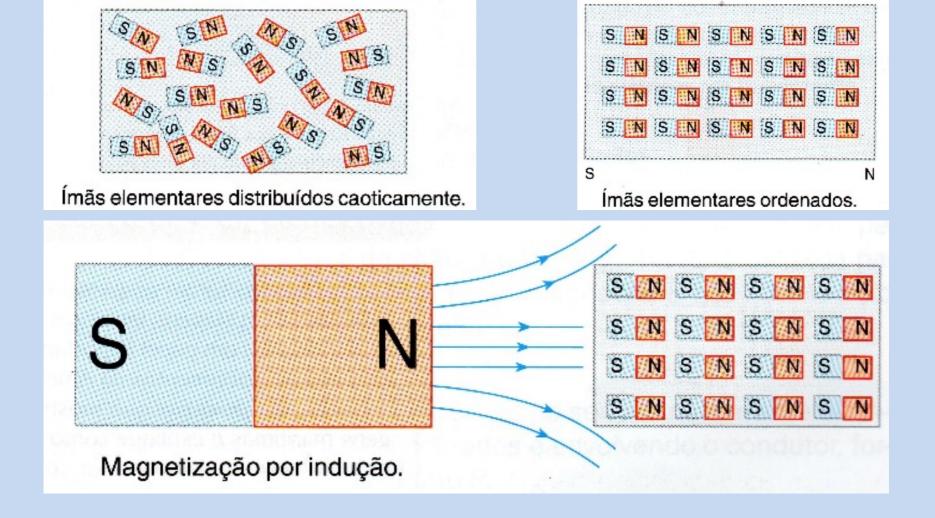
Campo magnético terrestre

Campo magnético e linhas magnéticas

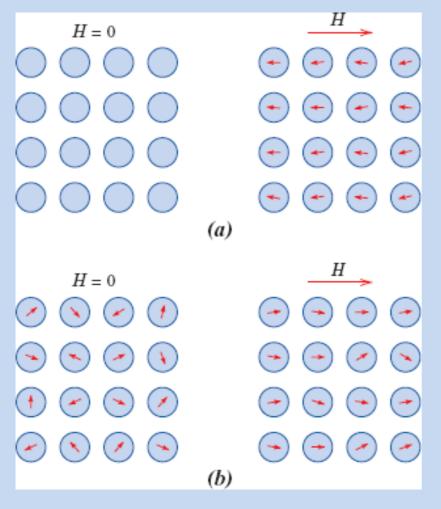
 Em outros corpos celestes, o campo magnético não é tão regular como o da Terra


Campo magnético de Marte

Campo magnético do Sol


Origem do campo magnético

 Um modelo para a origem do campo magnético seria o movimento dos elétrons ao redor do núcleo e o movimento de rotação dos elétrons, constituindo imãs elementares.


Origem do campo magnético

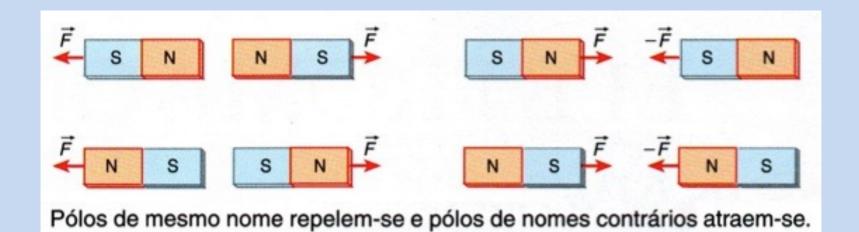
 Nos materiais desmagnetizados, esses imãs elementares estariam distribuídos aleatoriamente, anulando-se, ao passo que nos magnetizados estariam alinhados, com seus efeitos individuais somados.

Tipos de materiais quanto ao comportamento magnético

- Diamagnéticos: reagem de modo fraco a um campo magnético externo, e de modo inverso a ele (a); são repelidos.
- **Paramagnéticos**: reagem de modo fraco, e de modo paralelo a ele (b); são atraídos.

Rã (diamagnética) flutuando sob a ação de um campo magnético de 16 T, num tubo de 32 mm

Oxigênio líquido (paramagnético) atraído pom um imã

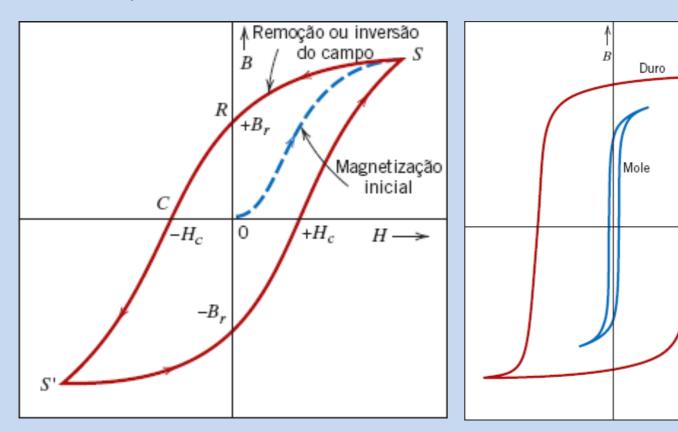

Tipos de materiais quanto ao comportamento magnético

- Ferromagnéticos: nesses materiais, os spins dos elétrons estão alinhados, e há interação magnética entre os átomos, intensificando o fluxo magnético
- O ferro é o metal ferromagnético mais comum, mas existem outros, como o cobalto e o níquel.

Propriedades dos imãs: polaridade

N S N S N S N S S A inseparabilidade dos pólos de um ímã.

Não existem monopolos magnéticos.

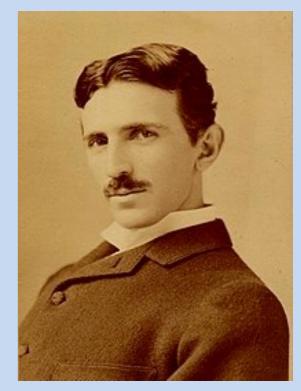

$$\nabla \cdot \vec{B} = 0$$

2ª equação de Maxwell

Propriedades dos imãs: histerese

- Os materias ferromagnéticos apresentam o fenônemo da histerese, isto é, tendem a manter seu estado anterior de magnetização.
- Os materiais ferromagnéticos **moles** são facilmente desmagnetizados e são adequados para núcleos de tranformadores, por exemplo.
- Os materiais ferromagnéticos **duros**, ao contrário, são adequados para imãs permanentes.

 $H \rightarrow$


Campo magnético

O campo magnético \vec{B} é medido em **tesla** (T) em homenagem a Nikola Tesla, graças a quem usamos a eletricidade.

Tesla: campo magnético capaz de produzir uma força de 1 N em uma partícula carregada com um carga de 1 C, a uma velocidade de 1 m/s.

$$[B] = T = \frac{Ns}{Cm}$$

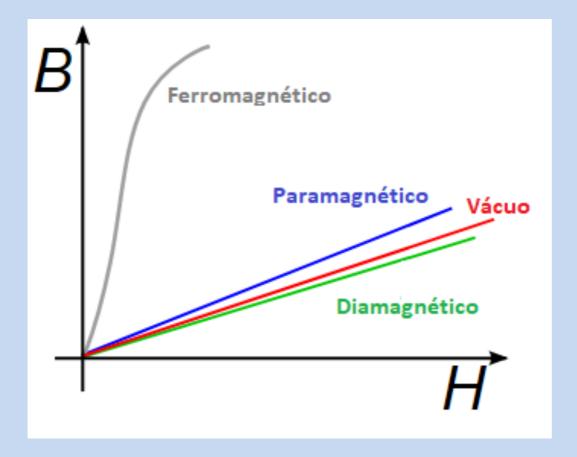
1 tesla = 10.000 gauss

1856-1943

¹ Chamado também de Densidade de Fluxo Magnético, ou Remanência

Valores aproximados de campos magnéticos

Source	B-Field (Tesla)
Human Brain	10-12
Interstellar Space	10-10
Near Household Wiring	10-4
Sunlight	3x10 ⁻⁵
Earth's Magnetic Field at Pole	5x10 ⁻⁴
Sunspots	0.3
Largest man-made Magnet	5.0
Surface of a Nucleus	106


Neodímio	Tesla (T)
N30	1.08-1.12
N33	1.14-1.17
N35	1.17-1.21
N38	1.22-1.26
N40	1.26-1.29
N42	1.29-1.32
N45	1.32-1.37
N48	1.37-1.42
N50	1.40-1.46
N52	1.42-1.47

44 T =>https://imamagnets.com/en/blog/what-is-most-powerful-magnet/

https://www.supermagn ete.de/eng/physicalmagnet-data

Permeabilidade magnética

Mede a capacidade de um material de formar um campo magnético $\overrightarrow{\boldsymbol{B}}$ dentro dele, ao ser submetido a um campo magnético auxiliar $\overrightarrow{\boldsymbol{H}}$ magnetizante $\left(\frac{C}{ms}\right)$. É representado pela letra $\boldsymbol{\mu}$ e sua unidade é $\frac{N\cdot s^2}{C^2}$

$$\mu = \frac{B}{H}$$

$$[\mu] = \frac{N \cdot s^2}{C^2}$$

Permeabilidade magnética absoluta

Material	Magnetic Permeability (Ns ² C ⁻²)	
Air	1.25663753x10 ⁻⁶	
Bismuth	1.25643x10 ⁻⁶	
Copper	1.256629x10 ⁻⁶	
Iron (pure)	6.3x10 ⁻³	
Nickle	1.26x10 ⁻⁴ - 7.54x10 ⁻⁴	
Carbon Steel	1.26x10 ⁻⁴	
Hydrogen	1.2566371x10 ⁻⁶	
Water	1.256627x10 ⁻⁶	
Wood	1.25663760x10 ⁻⁶	

Permeabilidade magnética relativa

Material	Permeabilidade magnética relativa (µ _R)	Classificação magnética
Bismuto	0,999833	diamagnética
Água	0,999991	diamagnética
Cobre	0,999995	diamagnética
Ar	1,000000	paramagnética
Oxigênio	1,000002	paramagnética
Alumínio	1,000021	paramagnética
Cobalto	170	ferromagnética
Níquel	1.000	ferromagnética
Ferro	7.000	ferromagnética
Permalloy ¹	100.000	ferromagnética

⁽¹⁾ Liga composta por ferro (17%), molibdênio (4%) e níquel (79%).

A permeabilidade magnética relativa é tomada em relação à permeabilidade magnética do vácuo, cujo valor é:

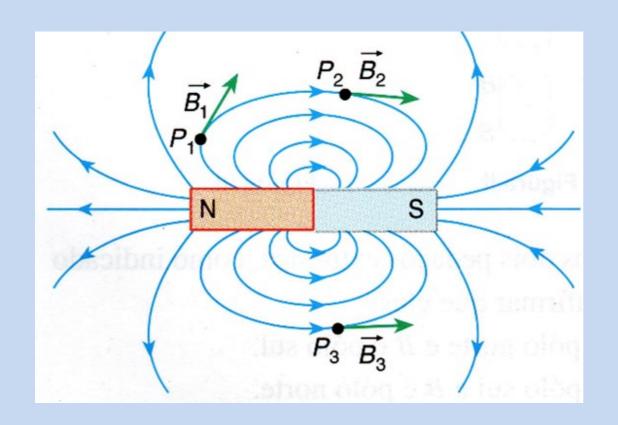
$$\mu_0 = 4\pi \cdot 10^{-7} \; \frac{Ns^2}{C^2} \; ; \; \mu_0 = 1.26 \cdot 10^{-6} \; \frac{Ns^2}{C^2}$$

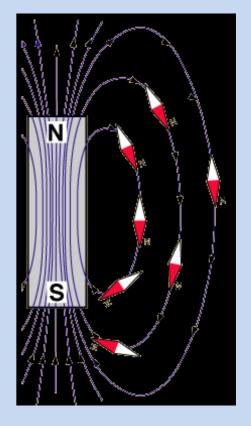
Força magnética

 A força magnética máxima em condições ideais de uma superfície magnetizada depende dos seguintes fatores:

$$F = \frac{B^2 \cdot A}{2 \cdot \mu_0}$$

– Onde:

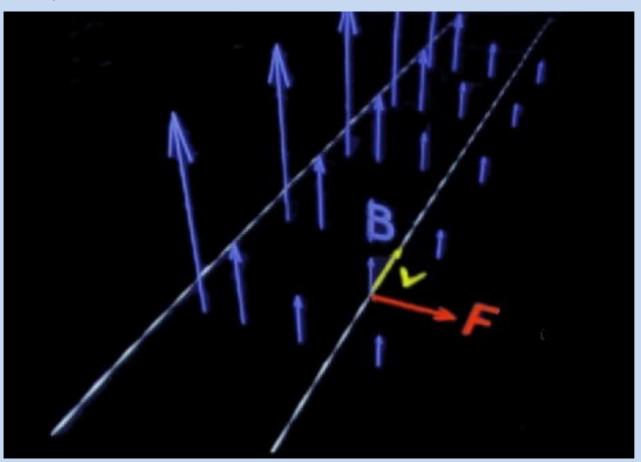

- $B \Rightarrow densidade do fluxo magnético do imã (T)$
- $A \Rightarrow Seção transversal do imã (m^2)$
- $\mu_0 \Rightarrow permabilidade magnética \left(N \cdot \frac{s^2}{c^2}\right)$

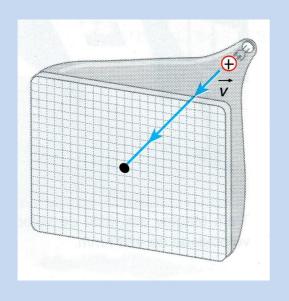

Força magnética, exemplo

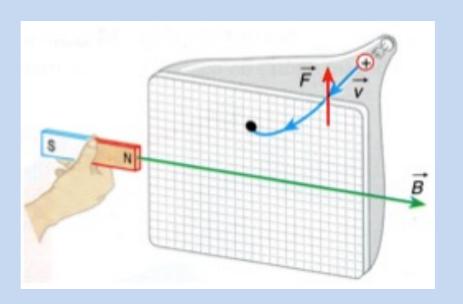
 Uma carga de 10 kg deverá permanecer suspensa por um cabo e um imã de neodímio que ficará pegado a um teto magnético. O campo magnético do imã é de B=12000 G. Calcule o diâmetro do imã mínimo necessário, considerando um fator de segurança de 3x.

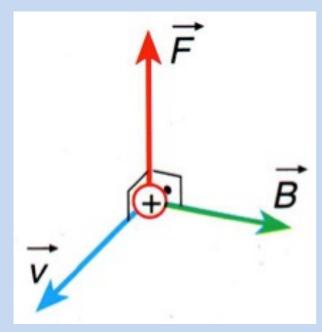
Considere
$$\mu_0 = 1,26 \cdot 10^{-6} \frac{Ns^2}{C^2}$$

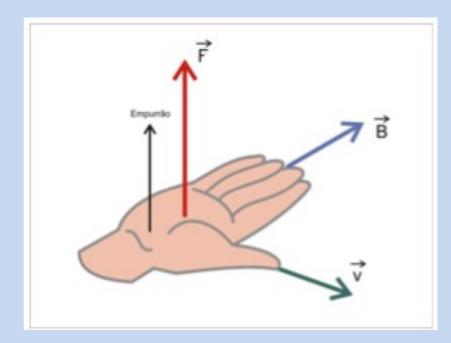
Vetor campo magnético e linhas de indução



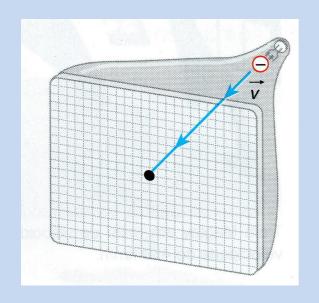

- Por convenção, as linhas de campo magnético saem do N e vão para o S
- O vetor B representa, em cada ponto, a intensidade, a direção e o sentido do campo magnético

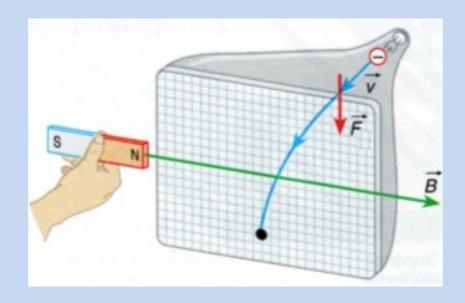

Força sobre uma partícula carregada

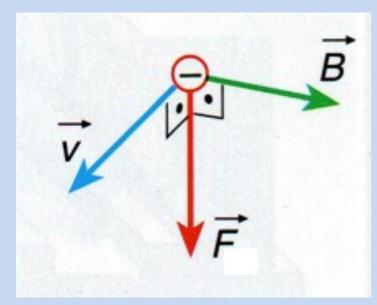

 Quando uma partícula carregada eletricamente atravessa um campo magnético, ela sofre uma força que é perpendicular ao plano formado pelo campo magnético e pelo deslocamento da partícula

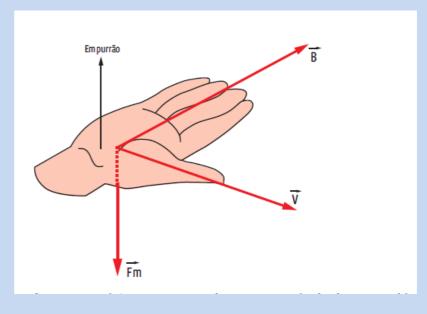


Partículas positivas num campo magnético

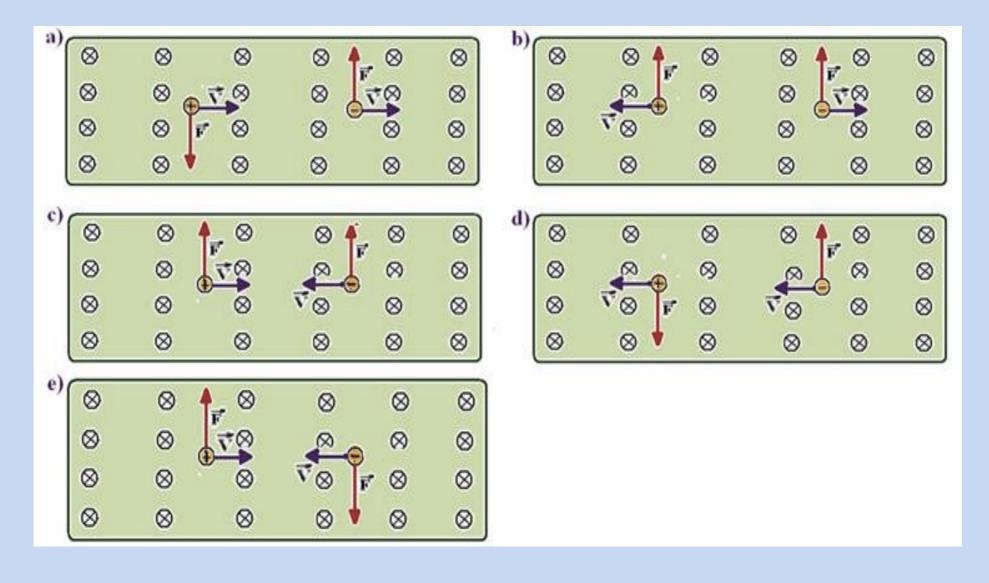


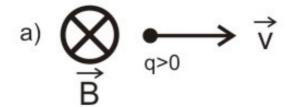





Regra da mão direita, partícula positiva

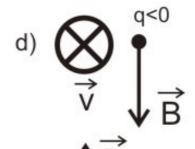
Partículas negativas num campo magnético

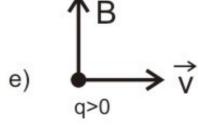




Regra da mão direita, partícula negativa

Quais das alternativas abaixo estão corretas?



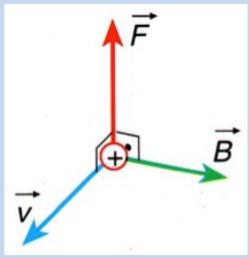

Indique o sentido da força

b)
$$\bigoplus_{q<0} \xrightarrow{q<0} \overrightarrow{V}$$

c)
$$\bigoplus_{q>0} \xrightarrow{q>0} \overrightarrow{B}$$

f)
$$\bigotimes_{q<0}$$
 $\bigvee_{q<0}$

Força sofrida por uma partícula sujeita a um campo magnético


• O vetor \vec{F} é o produto da carga q pelo **produto vetorial** dos vetores \vec{B} e \vec{v}

$$\vec{F} = q \cdot (\vec{v} \times \vec{B})$$

O módulo do vetor F pode ser calculado por:

$$F = |q| \cdot v \cdot B \cdot sen\alpha$$

Arquivo Geogebra

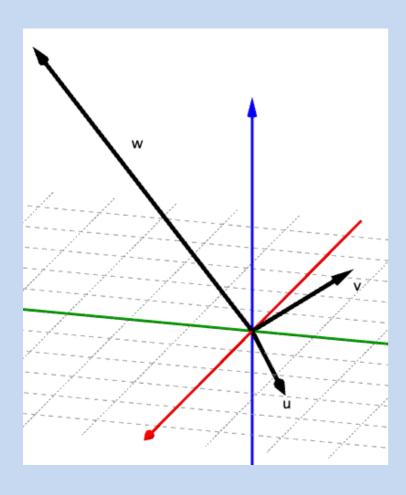
Produto vetorial

 O produto vetorial expressa a ortogonalidade entre dois vetores, ou seja, é máximo quando os vetores são perpendiculares. Sejam os vetores:

$$\vec{u} = x_1 \hat{\imath} + y_1 \hat{\jmath} + z_1 \hat{k}$$
 e $\vec{v} = x_2 \hat{\imath} + y_2 \hat{\jmath} + z_2 \hat{k}$

• O vetor $\vec{w} = \vec{u} \times \vec{v} = x_3 \hat{\imath} + y_3 \hat{\jmath} + z_3 \hat{k}$ será dado em coordenadas retangulares pelo determinante:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$


• E seu módulo será:

$$|\vec{w}| = \sqrt{|x_3\hat{i}|^2 + |y_3\hat{j}|^2 + |z_3\hat{k}|^2}$$

Produto vetorial, exemplo

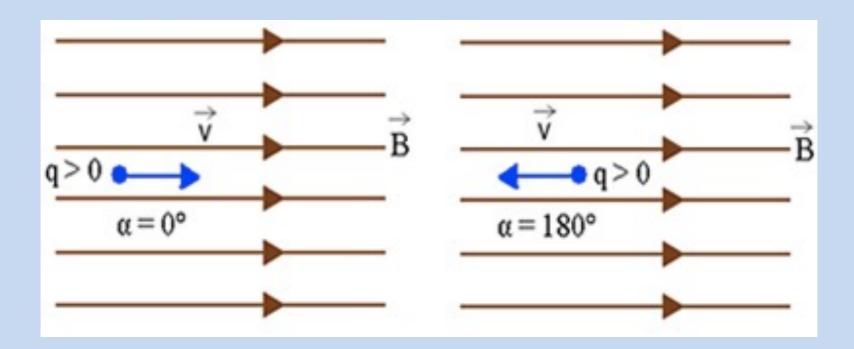
• Calcule o vetor $\vec{w} = \vec{u} \times \vec{v}$, e seu módulo, sendo:

$$\vec{u} = 3\hat{i} + 2\hat{j} - \hat{k}$$
 e $\vec{v} = -\hat{i} + 3\hat{j} + 2\hat{k}$

Exemplo

Seja uma carga de 15 μ C viajando a uma velocidade v=96,7~m/s, num campo magnético B=1,6~T, em um ângulo de 21,7°. Calcule o módulo da força à qual ela está sujeita

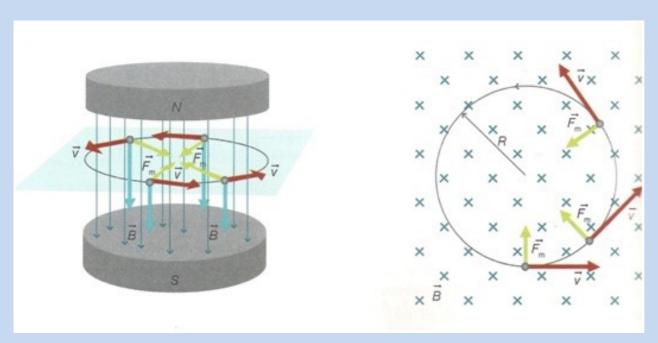
Exemplo

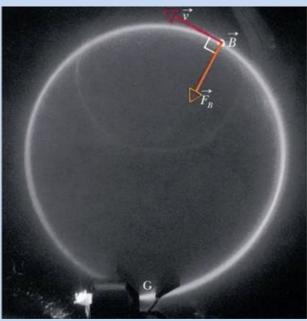

Seja uma carga de 15 μ C viajando a uma velocidade \vec{v} , num campo magnético \vec{B} , descritos abaixo. Calcule o vetor força à qual ela está sujeita e seu módulo.

$$\vec{v} = (35\hat{\imath} + 50\hat{\jmath} + 75\hat{k})\frac{m}{s}; \quad \vec{B} = (0.7\hat{\imath} + 1.2\hat{\jmath} + 0.8\hat{k})T$$

Trajetória paralela

 Se a partícula está alinhada com o campo magnético, ela não sofre nenhuma força

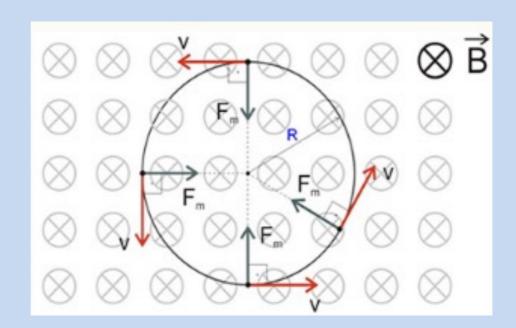

$$|\overrightarrow{F}| = |q| \cdot v \cdot B \cdot sen\alpha \Rightarrow |\overrightarrow{F}| = |q| \cdot v \cdot B \cdot sen0 \Rightarrow |\overrightarrow{F}| = 0 N$$



Trajetória perpendicular

• Se a partícula se move **perpendicularmente** ao campo, a força é máxima, e ela descreve um círculo

$$|\overrightarrow{F}| = |q| \cdot v \cdot B \cdot sen\alpha \Rightarrow |\overrightarrow{F}| = |q| \cdot v \cdot B \cdot sen 90 \Rightarrow |\overrightarrow{F}| = |q| \cdot v \cdot B$$


Trajetória circular

• A força resultante é centrípeta.

Da mecânica, temos que a força centrípeta é igual a:

$$F_{Cp} = \frac{m \cdot v^2}{r} \quad (1)$$

Como a força centrípeta é de natureza elétrica, temos:

Igualando (1) e (2), teremos que:

$$F = q \cdot v \cdot B$$
 (2)

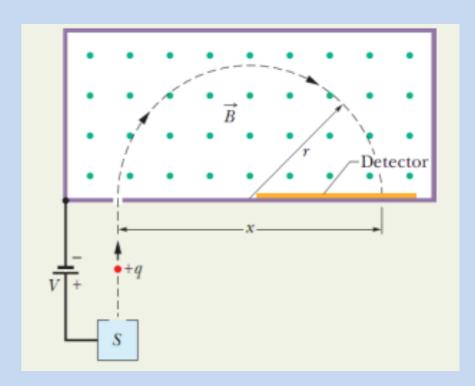
$$q \cdot v \cdot B = \frac{m \cdot v^2}{r} \Rightarrow r = \frac{m \cdot v^2}{q \cdot v \cdot B} \Rightarrow r = \frac{m \cdot v}{q \cdot B}$$

Período

 O tempo que a partícula leva para dar uma volta é chamado período T, e pode ser deduzido a partir de:

$$v = \frac{\Delta x}{\Delta t} \Rightarrow \Delta t = \frac{\Delta x}{v}$$

No nosso caso:


$$\Delta t = T \ e \ \Delta x = 2\pi r$$
 e vimos que : $r = \frac{mv}{qB}$

Assim

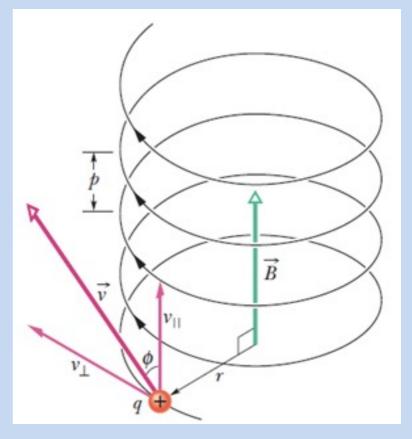
$$T = \frac{2\pi r}{v} \Rightarrow T = \frac{2\pi}{v} \cdot \frac{mv}{qB} \qquad T = \frac{2\pi m}{qB}$$

Exemplo

Em um espectrômetro de massa, deseja-se estimar a massa de uma partícula de carga $q=1,6\cdot 10^{-19}$ C. Ela é lançada perpendicularmente em um campo magnético de $8,0\cdot 10^{-2}$ T a uma velocidade de $3,0\cdot 10^4$ m/s, e é dectada a uma distância x=1,63 m a partir do ponto de entrada no campo magnético. Com esses dados, estime a massa da partícula e quanto tempo levou da entrada do campo até a detecção, considerando que a trajetória foi semicircular.

Trajetória

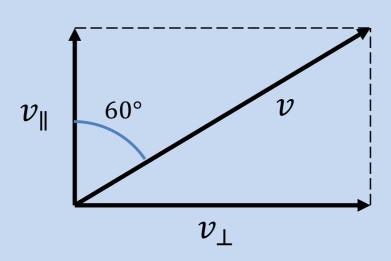
• Se partícula é lançada obliquamente, num ângulo ϕ em relação ao campo magnético sua trajetória é helicoidal, descrita por:

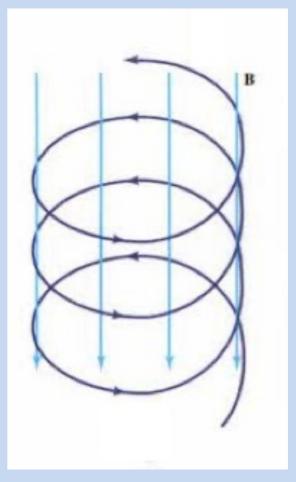

$$v^2 = v_\perp^2 + v_\parallel^2$$

 $v_{\parallel} \Rightarrow$ velocidade paralela a \vec{B}

 $v_{\perp} \Rightarrow$ velocidade paralela a \vec{B}

$$v_{\perp} = v \cdot sen \phi$$

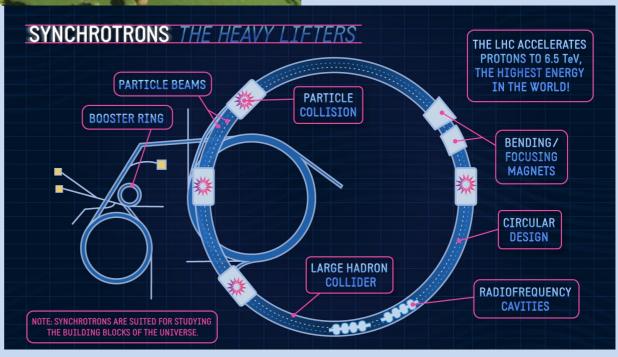

$$p = v_{\parallel} \cdot T$$



$$r = \frac{m \cdot v \cdot sen \, \phi}{q \cdot B}$$

Exemplo

• Uma partícula com carga $q=3.2\cdot 10^{-19}$ C penetra em uma região cujo campo magnético é de $B=0.01\,T$, formando um ângulo de 60° com ele. Depois de dar 100 voltas, a partícula atinge a altura de 10 metros em 1,0 ms, traçando uma helicoidal de 5,0 metros de diâmetro. Calcule a massa da partícula.



Aplicação: aceleradores de partículas

Sirius, Campinas, SP 518 metros de diâmetro

LHC, França/Suiça 8,6 km de diâmetro

Ao final dessa aula você deve ser capaz de:

Entender a natureza e tipos de magnetismo: diamagnetismo, paramagnetismo, ferromagnetismo

Compreender o que é permeabilidade magnética e seu efeito na força magnética e na histerese

Relacionar a direção da força em uma partícula com sua velocidade e o campo magnético que ela atravessa

Calcular o módulo, direção e sentido da força

Prever a trajetória da partícula carregada ao atravessar um campo magnético