UC Medição em ciências e representação gráfica

Análise dimensional - exercícios Prof. Simões Uma das principais equações da Mecânica quântica permite calcular a energia **E** associada a um fóton de luz em função da frequência **f** da respectiva onda eletromagnética:

Nessa equação, **h** é a constante de Planck. Adotando como fundamentais as grandezas **M** (massa), **L** (comprimento) e **T** (tempo), determine a expressão dimensional de **h**.

$$[E]_{2} M L^{2} T^{-2}; [f]_{2} T^{-1}$$

$$M L^{2} T^{-2} = M^{2} L^{3} T^{3}. T^{-1}$$

$$M L^{2} T^{-2} = M^{2} L^{3} T^{3} - 1$$

$$M L^{2} T^{-2} = M^{2} L^{3} T^{-1}$$

$$\Sigma = I; M^{2} = 2;$$

$$3 - 1 = -2 = 3 \quad Z = -1$$

Conforme as teorias de Newton, dois astros de massas respectivamente iguais a **M** e **m**, com centros de massa separados por uma distância **d**, atraem-se gravitacionalmente trocando forças de intensidade **F**, dadas por:

$$F = G \frac{Mm}{d^2}$$

em que **G** é a constante da Gravitação. Em relação às dimensões mecânicas fundamentais – comprimento (**L**), massa (**M**) e tempo (**T**) –, determine a equação dimensional, bem como a unidade SI de **G**.

A pressão **p** de um número de mols **n** de gás perfeito que ocupa um volume **V** a uma temperatura absoluta τ pode ser calculada pela equação de Clapeyron:

em que \mathbf{R} é uma constante, denominada constante universal dos gases perfeitos. Adotando como fundamentais as grandezas \mathbf{F} (força), \mathbf{L} (comprimento), \mathbf{T} (tempo) e $\mathbf{\theta}$ (temperatura), determine a expressão dimensional de \mathbf{R} .

(Unirio-RJ) Para o movimento de um corpo sólido em contato com o ar foi verificado experimentalmente que a intensidade da força de resistência $\mathbf{F}_{\mathbf{r}}$ é determinada pela expressão $\mathbf{F}_{\mathbf{r}} = \mathbf{k} \mathbf{v}^2$, na qual \mathbf{v} é o módulo da velocidade do corpo em relação ao ar e k, uma constante.

A unidade de k, no Sistema Internacional (SI), é dada por:

c) kg · m · s⁻¹

$$\begin{bmatrix} F_{1} \end{bmatrix}_{2} M L T^{-2} ; \quad [N]_{2} = L.T^{-1} \\
 M.L. T^{-2} = M^{2} L^{10} T^{3} . (L. T^{-1})^{2} \\
 M.L. T^{-2} = M^{2} L^{10-12} T^{3} . L^{2} . T^{-2} \\
 M L T^{-2} = M^{2} L^{10+2} T^{3-2} T^{3-2}$$

x=1; 1/3+2=1=0 H=-1

(Unicamp-SP – mod.) Quando um recipiente aberto contendo um líquido é sujeito a vibrações, observa-se um movimento ondulatório na superfície do líquido. Para pequenos comprimentos de onda λ , a velocidade de propagação \mathbf{v} de uma onda na superfície livre do líquido está relacionada à tensão superficial σ , conforme a equação

$$v = \sqrt{\frac{2\pi \sigma}{\rho \lambda}}$$

em que ρ é a densidade do líquido. Esta equação pode ser utilizada para determinar a tensão superficial induzindo-se na superfície do líquido um movimento ondulatório com uma frequência f conhecida e medindo-se o comprimento de onda λ .

Determine:

- a) a equação dimensional da tensão superficial σ em relação à massa
 M, comprimento L e tempo T.
- b) as unidades da tensão superficial σ no Sistema Internacional de Unidades.

(Ufla-MG) No estudo de Fluidodinâmica, a intensidade da força viscosa pode ser dada pela equação $F = \eta d v$, sendo η o coeficiente de viscosidade, d a distância percorrida pelo fluido e v o módulo da sua velocidade de deslocamento. Considerando-se o Sistema Internacional, SI, o coeficiente de viscosidade η é dado pelas unidades:

- a) kg · m · s⁻¹
- b) kg · m⁻¹ · s⁻¹
- c) kg · m⁻¹ · s
- d) kg·m·s
- e) (kg)⁻¹ · m · s⁻¹

Isolan &
$$M = 0$$
 $F = M.2.N $\Rightarrow 0$ $M = F$

$$\frac{1}{2}M^{2} = \frac{M.k.\tau^{-2}}{\chi. \iota.\tau^{-1}} \Rightarrow [M] = M \iota^{-1} \tau^{-1}$$

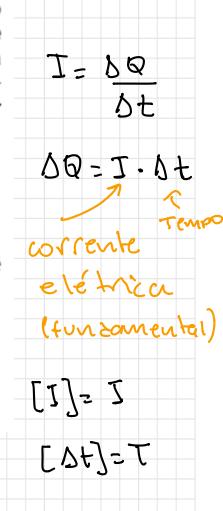
$$[M] = \frac{M}{\chi. \iota.\tau^{-1}} = \frac{M}{\chi. \iota.\tau^{-1}} = \frac{M}{\chi. \iota.\tau^{-1}}$$$

No Sistema Internacional (SI), as sete unidades de base são o metro (m), o quilograma (kg), o segundo (s), o kelvin (K), o ampère (A), a candela (cd) e o mol (mol). A Lei de Coulomb da Eletrostática permite calcular a intensidade (F) da força de interação (atração ou repulsão) trocada entre duas cargas puntiformes Q₁ e Q₂, separadas por uma distância d, por meio de uma expressão do tipo:

$$F = \frac{1}{4\pi \ \epsilon_0} \cdot \frac{Q_1 \ Q_2}{r^2}$$

em que $\epsilon_{_0}$ é uma constante fundamental da Física. Em relação a $\epsilon_{_0}$, é correto afirmar que:

- a) é uma grandeza adimensional.
- b) no SI, é medida em m⁻² s² A².
- c) no SI, é medida em m⁻³ kg⁻¹ A².
- d) no SI, é medida em m⁻³ kg⁻¹ s⁴ A².
- e) no SI, é medida em m⁻³ s⁴ A².



$$[F] = M \cdot [T^{-2}]$$

$$[AK] = I$$

$$M \cdot [T^{-2}] = M^{-2} \cdot [T^{-2}]$$

$$M \cdot [T^{-2}] = M^{-2} \cdot [T^{-2}$$

- Adotando como fundamentais as grandezas **M** (massa), **L** (comprimento), **T** (tempo) e **I** (intensidade de corrente elétrica), determine as expressões dimensionais e as respectivas unidades SI das seguintes grandezas físicas:
- a) carga elétrica; b) capacitância eletrostática.

a)
$$i = DQ$$
 $\Rightarrow DQ = i \cdot DE \Rightarrow [DQ] = I \cdot T$

Of $Uni \geq ade : A \cdot S = C \cdot (Coulomb)$

b) $U = E = ML^2 T^{-2}$; $[UJ = ML^2 T^{-3} J^{-1}]$
 $C = Q \Rightarrow [C] = J \cdot T = M^{-1} L^{-2} T^{-1} L^{2}$
 $M.L^2.T^{-3}.S^{-1}$

Uni $dade : S^{1}.A^{2} = farae(F)$
 $Uni dade : S^{1}.A^{2} = farae(F)$

(Mack-SP) Na equação dimensionalmente homogênea x = at² – bt³, em que x tem dimensão de comprimento (L) e t tem dimensão de tempo (T), as dimensões de a e b são, respectivamente:

- a) LTeLT⁻¹ d) L⁻²TeT⁻³
- b) L²T³ e L⁻²T⁻³ e) L²T³ e L T⁻³

①
$$LT^{-2}eLT^{-3}$$

 $x = at^{2} - 5t^{3}$

$$[x]_{=1}$$
 ... $[a + ^{2}]_{=1}$ $[a]_{-1}$ $[a]_{-1}$ $[a]_{-1}$ $[a]_{-1}$ $[a]_{-1}$ $[a]_{-1}$

[6].
$$[t^3] = L = 0$$
 [6]. $T^3 = L = 0$ [6] = LT^{-3}

$$(for \xi \alpha)^{\frac{1}{2}}$$
. $(massa)^{\frac{1}{2}} = volume (energia)^{\frac{3}{2}}$
 $(M \ 1 \ 7^{-2})^{\frac{1}{2}}$. $M^{\frac{1}{2}} = 1^{\frac{3}{2}}$. $(M \ 1^{\frac{1}{2}} \ 7^{-2})^{\frac{3}{2}}$
 $M^{\frac{1}{2}} = 1^{\frac{3}{2}}$. $M^{\frac{3}{2}} = 1^$