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Violin Acoustics
The acoustics of thin-walled shallow boxes – a tale of coupled oscillators.

Introduction
This article describes how sound is excited by the violin and how the quality of its 
sound is related to the vibrations and acoustic properties of the body shell of the 
instrument.

The violin and the closely related viola, cello, and double bass are shallow, thin-
walled, boxlike shell structures with orthotropic, guitar-shaped, doubly-arched 
plates, as illustrated in Figure 1. They therefore share very similar acoustical prop-
erties reflecting their similar shapes and symmetries. Violin acoustics is just a 
special example of the acoustics of any shallow boxlike structure.

The earliest known extant violin, now in the National Music Museum in Vermil-
lion, was made by Andrea Amati (ca. 1505-1577), widely recognized for introduc-
ing the violin in its present largely unchanged form. It was made in Cremona in 
Northern Italy, which became the home of several generations of famous violin 
makers including Antonio Stradivari (1644-1737) and Guarneri del Gesù (1698-
1744). Their violins still remain the instruments of choice of almost all top inter-
national soloists. They fetch extraordinary high prices; the “Vieuxtemps” 1741 
violin by Guarnerius was reputably recently sold for around $18M.

In contrast, the highest auction price for a violin by a living maker was $130K in 
2003 for a violin made by the Brooklyn maker Sam Zygmuntowicz, only recently 
surpassed in 2014 for a violin jointly made by the Ann Arbor, MI, makers Joseph 
Curtin and Greg Alf, which fetched $134 K. At the other end of the spectrum, a 
mass-produced student violin can be bought for around $100, with bow, case, and 
a cake of rosin included! 
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Figure 1. A 19th century 
French violin with com-
ponent parts labeled.
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Can we tell the difference in the measured acoustic proper-
ties of instruments of such vastly different prices? Can we 
discover the acoustic secret, if any, of the old Cremonese 
master violins? Can a knowledge and understanding of the 
acoustical properties of the old violins help modern makers 
match the sounds of such violins? These are the major chal-
lenges for acousticians.

Despite the continuing reluctance of many violin makers to 
accept the intrusion of science into the traditional art of vio-
lin making, it is surely no coincidence that outstanding mak-
ers like Zygmuntowicz and Curtin have also played promi-
nent roles in advancing our knowledge and understanding 
of the sounds of fine Italian instruments and their acoustic 
properties. 

Today, as a result of strong collaborations involving violin 
makers, museum curators, players, owners, dealers, and ac-
ousticians, we have a wealth of information on the acousti-
cal properties of nearly 100 classic Italian violins including 
many Stradivari and Guarneri violins, as well as many fine 
modern instruments, important knowledge that was miss-
ing until the last few years.

Such information establishes a “benchmark” for modern 
makers, if their instruments are to consistently match the 
sounds of the early Cremonese makers. Simple acoustic 
measurements in their workshops during the making of 
their instruments can help them achieve this. 

Interestingly, Claudia Fritz and her collaborators (Fritz et 
al., 2014) recently conducted a rigorously designed psycho-
acoustic investigation of six fine Italian and six modern vio-
lins, which involved comparative listening tests and parallel 
vibroacoustic characterization. The outcome was that with-
out visual clues even top international soloists were unable 
to reliably distinguish the old instruments from the new de-
spite their huge disparity in value. This confirmed similar 
conclusions from a previous investigation involving a small-
er number of instruments (Fritz et al., 2012).

The concept of a “Stradivari secret” known only to the clas-
sic Italian makers to account for the outstanding sound of 
many of their instruments is now largely discredited, not 
in the least because the sound of the instruments we listen 
to today are very different from when they were originally 
made. This is because they were “modernized” in various 
subtle ways in the 19th century by the use of metal-covered 
rather than pure-gut strings, a lengthened neck, a different 
standard tuning pitch, a modern bridge, and being played 

with a modern bow. This was in response to the need for 
instruments that could respond to the increasingly virtuosic 
demands of the player and project strongly over the sound of 
the larger orchestras and concert halls of the day.

Radiated Sound
In many ways, the acoustics of the violin is closely analo-
gous to that of a loudspeaker mounted in a bass-reflex cabi-
net enclosure as described in many acoustics textbooks (e.g., 
Kinsler et al., 1982). The thin-walled body shell of the vio-
lin radiates sound directly just like a loudspeaker cone. The 
shell vibrations also produce pressure fluctuations inside the 
hollow body, which excite the Helmholtz f-hole resonance, 
the highly localized flow of air bouncing in and out of the 
f-holes cut in the top plate. The Helmholtz resonance fre-
quency is determined by the size and geometry of the f-holes 
and compressibility of the air inside the body shell. This is 
similar to the induced vibrations of air through the open 
hole in a bass-reflex loudspeaker cabinet. In both cases, this 
significantly boosts the sound radiated at low frequencies, 
where radiation from the higher frequency body shell or 
loudspeaker cone resonances would otherwise have fallen 
off very rapidly. 

Contrary to what many players believe, negligible sound 
is radiated by the vibrating string because its diameter is 
much smaller than the acoustic wavelength at all audio fre-
quencies of interest. Nevertheless, the bowed string clearly 
provides the important driving force producing the sound 
of the instrument just like the electrical current exciting a 
loudspeaker cone. The quality of the radiated sound is there-
fore only as good as the player controlling the quality of the 
bowed string input!

Sound is excited by transverse “Helmholtz” bowed-string 
waves excited on the string, which exert a force with a saw-
tooth waveform on the supporting bridge as described be-
low. Because of the offset soundpost wedged between the 
top and back plates, the transverse bowed-string forces the 
bridge to bounce up and down and rock asymmetrically 
backward and forward in its own plane on the island area 
between the f-holes cut into the top plate, as illustrated in 
Figure 2. The bridge and island area act as an acoustic trans-
former coupling energy from the vibrating string into the 
vibrating modes of the lower and upper bouts of both the 
top and back plates of the body shell. 

The radiated sound is then strongly dependent on 
the coupling of the vibrating strings to the radiating 
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modes of the body shell, which are only weakly perturbed 
by their coupling to other attached parts of the violin such as 
the neck, fingerboard, tailpiece supporting the strings, and 
even the player holding the instrument. 

String Vibrations 
Hermann von Helmholtz (1821-1894) was the first to both 
observe and explain the transverse vibrations of the bowed 
string. His measurements and their interpretation were de-
scribed in The Sensation of Tone (Helmholtz, 1863), which 
laid the foundation for the discipline of psychoacoustics and 
our understanding of the perception of sound. Although a 
strongly bowed string appears to be vibrating as a simple 
half-wavelength sinusoidal standing wave, what we observe 
is only the time-averaged parabolic envelope of the much 
more interesting Helmholtz wave. 

For an ideally flexible string with rigid end supports, Helm-
holtz showed that the waveform consists of two straight sec-
tions of the tensioned string rotating in opposite direction 
about its ends, with a propagating “kink” or discontinuity 
in the slope at their moving point of intersection. The kink 
traverses backward and forward at the speed of transverse 
waves, √T/μ , reversing its sign on reflection at both ends, 
where T is the tension and μ is the mass per unit length of 
the string. The Helmholtz wave is therefore periodic with the 
same repetition frequency or pitch as the fundamental sinu-
soidal mode of vibration. 

Such a wave can be considered as the Fourier sum of the 
sinusoidal eigenstates of an ideal string with rigid end sup-
ports, with “harmonic” partials (fn = nf1), and amplitudes 
varying as 1/n, where n is an integer and f1 is the frequency 
of the fundamental component. On an ideal string, such a 
wave would propagate without damping or change in shape. 

In practice, the Helmholtz string vibrations are excited and 
controlled in amplitude by the high nonlinear frictional “slip-
stick” forces between the moving bow hair and string similar 
to the forces giving rise to the squeal of car tires under heavy 
breaking. Video 1 (http://goo.gl/UtNOI4) (Wolfe, 2016) il-
lustrates the bowed waveform as it sticks to and then slips 
past the steadily moving bow. 

To produce sound, the string vibrations clearly have to 
transfer energy to the radiating shell modes via the asym-
metrically rocking bridge. As a result, each mode of the 
string contributing to the component partials of the Helm-
holtz wave will be selectively damped and changed in 
frequency by its coupling to the individual shell modes 
(Gough, 1981). Nevertheless, provided the coupling of 
the lowest partials is not too strong, the highly nonlinear, 
slipstick, frictional forces between the string and rosined 
bow can still excite a repetitive Helmholtz wave. Cremer 
(1984) showed that the kink is then broadened with addi-
tional ripples that are also excited by secondary reflections 
of the kink at the point of contact between string and bow.  

If the fundamental string mode contributing to the Helm-
holtz wave is too strongly coupled to a prominent body res-
onance, even the highly nonlinear frictional force between 
bow and string is unable to sustain a repetitive wave at the 
intended pitch. The pitch then rises an octave or leads to a 
warbling or croaking sound, the infamous “wolfnote,” which 
frequently haunts even the finest instruments, especially on 
fine cellos. This is an extreme example of the way the string-
shell mode coupling affects the “playability” of an instru-
ment (Woodhouse, 2014, Sect. 5), which is almost as impor-
tant to the player as its sound. 

The excitation and properties of Helmholtz waves on the 
bowed string are so important that Cremer (1984) devotes 
almost half his seminal monograph on The Physics of the Vi-
olin to a discussion of string vibrations. In Cambridge, UK, 
McIntyre and Woodhouse (1979) developed elegant com-
puter simulations to investigate the physics involved, with 
more recent advances described by Woodhouse (2014, Sect. 
2) in his recent comprehensive review of violin acoustics. 

Major advances in our understanding of how the player and 
the properties of the bow determine the time evolution and 
shape of the circulating kink, hence the sound of the bowed 
string, were made by the late Knutt Guettler (2010), a vir-
tuoso soloist and teacher of the double bass. The rapid ex-
citation of regular Helmholtz waves on short, low-pitched, 

Figure 2. A schematic representation of the excitation of the vibra-
tional modes of the body shell and Helmholtz f-hole resonance by the 
bowed string via the asymmetric rocking of the bridge. 

Violin Acoustics
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bowed notes on the double bass is vitally important; other-
wise, the note is over before it has even started! The ability 
to achieve a clean start to a bowed note is one of the skills of 
a really good player on any bowed instrument (Guettler and 
Askenfelt, 1997). This involves controlling the acceleration 
of the bow following contact with the string as well its veloc-
ity, position, and downward force. This is one of the most 
important factors differentiating the skills of a top soloist 
from those of a good amateur player, let alone a beginner. 

The short audio extract (Audio 1, http://goo.gl/UtNOI4) of 
the sound produced by the piezoelectrically measured bowed 
string force acting on the bridge (Woodhouse, 2014) illustrates 
both the already violin-like sound of the driving force and the 
skill of an expert performer in controlling its subtle inflections 
of both amplitude and pitch. 
 
Excitation of Body Shell Modes 
The radiated sound of the violin is therefore determined by 
the overlap of the comb of harmonic partials excited by the 
Helmholtz wave on the bowed string and the multiplicity of 
resonant radiating body shell modes, with the bridge acting as an 
acoustic filter between, as illustrated schematically in Figure 3.

The isolated bridge resting on a rigid platform has two im-
portant in-plane resonances at around 3 kHz and 6 kHz, ro-
tation of its upper half about its waist and bouncing up and 
down on its two feet. When mounted on the island area of 

the top plate, such resonances are strongly damped by their 
coupling to the body shell modes. 

As many as 40 harmonic partials can be observed in the 
sound of the lowest bowed open string on a cello! The time-
varying strengths of each of these partials, modified in am-
plitude by the player and the multiresonant acoustic filter re-
sponse of the instrument, will then be processed within the 
cochlea of the ear and the highly sophisticated audio pro-
cesses that take place in the brain. The resulting complex-
ity of the signals reaching the brain ultimately determines 
the listener’s perception of the quality of an instrument as 
played by a particular player. 

Because of the multiresonant response of the violin, the 
waveform and spectrum of the radiated sound is very differ-
ent from that of the input Helmholtz sawtooth force at the 
bridge, as illustrated by the computer simulation in Figure 
3. It also varies wildly from note to note, and even within an 
individual note, when played with vibrato. Yet the sound of 
the violin perceived by the player and listener remains re-
markably uniform, other than slight changes when bowing 
on different strings. This paradox suggests that the quality of 
an instrument cannot be determined simply by the frequen-
cies and strengths of the individual resonances excited. This 
has encouraged the view that the frequency-averaged formant 
structure is perhaps the most important generic feature, with 
both the overall intensity and balance of sound radiated in the 
upper and lower frequency ranges being important. 

However, if a single period of the recorded waveform of the 
recorded sound of a violin is selected and repeated indefi-
nitely, the sound is like that of any crude Fourier synthesizer 
and nothing like a violin (Audio 2, http://goo.gl/UtNOI4). 
This suggests that the fluctuations in frequency, amplitude, 
and timbre, even within a single bowed note, strongly affect 
the perceived quality of a violin’s sound. The “complexity” 
of the sound arises from the strongly frequency- and direc-
tional-dependent fluctuations in spectral content or timbre, 
the use of vibrato, noise associated with the finite width of 
the bow hair in contact with the string, frictional forces, 
and the superposition of reflections from the surrounding 
walls (Meyer, 1992). All such factors provide a continuously 
changing input to the ear. This allows the brain to focus on 
the instrument being played, which may be just as important 
as the overall intensity of the perceived sound in determin-
ing an instrument’s “projection.” Averaging the frequency 
response would clearly reduce the complexity of the radiated 
sound, hence interest to the listener. 

Figure 3. The transformation of the bowed string input waveform 
into the radiated sound by the bridge and body shell resonances for 
one selected note. Vertical dashed lines: Frequencies of the bowed 
string partials.

http://goo.gl/UtNOI4
http://goo.gl/UtNOI4
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The Acoustic  
Spectrum 
Unlike loudspeakers designed 
to have as flat a frequency re-
sponse as possible, the spec-
trum of the violin fluctuates 
wildly, with many strong 
peaks and troughs reflecting 
the relatively weakly damped, 
multiresonant responses of 
the instrument. This will vary 
markedly in detail from one 
instrument to the next, even 
between different Stradivari 
and Guarneri violins, giving 
each instrument its individual 
sound quality.

Figure 4 shows the radiated 
sound measured by Curtin 
in five different directions for 
the Willemotte 1734 Stradivari violin investigated in the 
Strad 3-dimensional project (Zygmuntowicz and Bissinger, 
2009). The acoustic response was measured by tapping the 
bass-side top corner of the bridge in a direction parallel to 
the plates. This simulates the component of the bowed string 
force in the same direction. The fast Fourier transform (FFT) 
of the recorded sound has been normalized to that of the 
force of the light impact hammer exciting the violin modes. 
To simplify the acoustic response, the strings were damped, 
although string resonances can make a significant contribu-
tion to the quality of the radiated sound (Gough, 2005).

The observed resonances are those of the independent nor-
mal modes of the freely supported instrument, which have 
individual resonant responses just like a single damped 
mass-spring oscillator. They describe the coupled compo-
nent mode vibrations of the body shell, the air inside the cav-
ity, and all attached structures such as the neck, fingerboard, 
tailpiece, and strings (Gough, 2015b). To avoid potential 
confusion between the uncoupled normal and coupled com-
ponent modes, capital letters will be used for the former (A0, 
CBR, B1−, B1+,…) and small letters for the latter (f-hole, cbr, 
breathing, bending, …). 

The “coupled oscillators” text box illustrates how the cou-
pling between coupled component modes result in the veer-
ing and splitting of the frequencies of the resultant normal 

modes describing the in- and out-of-phase vibrations of the 
component modes. 

The radiated sound is the sum of the radiated sound from 
each of the excited normal modes. For typical Q-values 
(25-50), the amplitude and width of each resonant peak is 
damping limited over about a semitone or two of its reso-
nant frequency. Because of the logarithmic sensitivity of the 
ear, each mode still contributes significantly to the perceived 
sound well away from its resonance, where its response is 
determined by its springiness and effective mass below and 
above its resonant frequencies.

The effective mass of the individual shell modes can be de-
termined from the measured mobility or admittance (in-
duced velocity/applied force) in the direction of the force 
at the point of excitation. For a given mode, the lighter the 
plates, the stronger the radiated sound. Curtin (2006) has 
suggested that one of the reasons for the general decline in 
quality of violins from around 1750 onward was the use of 
somewhat heavier plates than those of the Italian masters. 
The radiated frequency response can be divided into three 
overlapping regions.
   (1) A signature mode range over the first two oc-

taves up to around 1,000 Hz, where there are a rela-
tively small number of well-defined resonant modes 
such as the A0, B1−, and B1+ modes indicated. 
Their resonant frequencies and intensities provide 

Figure 4. RSuperimposed spectra of the radiated sound pressure measured in the bridge plane at 0°, ± 
30° and ± 60° in front of the top plate of the Willemotte 1734 Stradivari violin. Red boxes: Frequencies 
of the open G0 to E0 strings and the first three octaves of the open E-string, E1 to E3. Data courtesy of 
Curtin, personal communication.
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an acoustic fingerprint for individual violins. They 
act as monopole sound sources radiating uniformly 
in all directions. Additional weak CBR, A1, and oth-
er higher frequency modes are also often observed 
but usually only contribute weakly to the radiated 
sound. 

  (2) A transitional frequency range from around 800-
1,500 Hz, where there is a cluster of quite strong 
resonances that cannot so easily be characterized 
without detailed modal analysis measurements and 
analysis, such as those made by Bissinger (2008a,b) 
and Stoppani (2013). At these frequencies and 
above, the modes act as additional multipole sourc-
es, with the radiated sound fluctuating strongly with 
both frequency and direction. This results in what 
Weinreich (1997) refers to as directional tone color, 
with the intensity of partials or the quality of sound 
of bowed notes varying rapidly with both direction 
and frequency.

  (3) A high-frequency range extending to well above 4 
kHz, below which there is often a rather broad peak 
around 2-3 kHz, originally referred to as the bridge 
hill (BH) feature, although no longer considered a 
property of the bridge alone. The density of the over-
lapping damped resonances makes it increasingly 
difficult to identify individual resonances. Above 

around 3 kHz, there is a relatively rapid roll-off in 
the frequency response of around 12 dB/octave, as 
indicated by the solid line with slope −2. This is be-
cause the bridge acts like a strongly damped reso-
nant input filter coupling the string vibrations to the 
radiating modes of the body shell.

The relative contributions and acoustic importance of the 
signature and higher frequency components to the sound of 
a violin are highlighted in Audio 3, http://goo.gl/UtNOI4, 
which illustrates the unfiltered recorded sound of a violin, 
then when the hard cut-off filters are applied first above and 
then below 1 kHz, and then with the their combined sounds 
repeated.

In the high-frequency range, a statistical approach argu-
ably provides a more useful way of describing the acoustic 
response, with a relatively broad, formantlike frequency 
response, with superimposed fluctuations in amplitude de-
pendent on mode spacing and damping (Woodhouse and 
Langley, 2012 , Sect. 3.3).

At a casual glance, all fine Italian violins and many later and 
modern instruments have very similar acoustic responses to 
those shown in Figure 3. Yet players can still recognize large 

Coupled Oscillators
Consider two coupled crossing-frequency component modes a and b. For simplicity, 

assume that some external constraint increases the frequency of mode a, which in 

the absence of coupling leaves the frequency of mode b unchanged, as illustrated 

in Figure 5, dashed lines. As soon as the coupling is “switched on,” two uncoupled 

normal modes A and B are formed (solid lines) describing the in- and out-ofphase 

coupled vibrations of the a and b component modes. Well away from the crossing 

frequency (coincidence), the normal modes retain their characteristic component 

mode forms with only a small contribution from the other mode.  However, as coin-

cidence is approached, the normal modes acquire an increasing contribution from 

the other mode. This results in the illustrated veering in opposite directions of the 

normal mode frequencies away from those of the otherwise uncoupled component 

modes.  At coincidence, the normal mode frequencies are split by an amount (Δ) determined by the coupling strength, with the two com-

ponent modes vibrating with equal energy in either the same or opposite phases.  Well above coincidence, the normal mode A continues 

to acquire an increasing component b mode character at the expense of mode a. Similarly, on passing through coincidence the character 

of normal mode B changes from b to a, as illustrated. 

   The vibrational modes of the violin can be considered as independent normal modes, with resonant responses identical to those of a 

simple harmonic oscillator, describing the coupled modes of the component modes of vibration of the top and back plates, the ribs, the 

cavity air modes, the neck and fingerboard assembly and their resonance, the tailpiece, and strings.

Figure 5. A schematic representation of the veering and splitting of 
normal mode frequencies describing the coupling of two component 
oscillators or vibrational modes. 

http://goo.gl/UtNOI4
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differences in the sounds of even the finest Stradivari and 
Guarneri violins. Puzzlingly, it is currently still difficult to 
identify which specific features of the acoustic response cor-
relate strongly with differences in perceived quality – other 
than at low and high frequencies. 

At low frequencies, Dunnewald (1991) and Bissinger (2008a) 
found that poor violins usually have a very weak sound out-
put, whereas at high frequencies, the response of all violins is 
strongly influenced by the vibrating mass of the bridge. This 
is easily demonstrated by adding a mute to the top of the 
bridge, with the increased mass increasing its high-frequen-
cy cut-off filtering action. This leads to a “softer,” “warmer,” 
and less intense sound, even for bowed notes played on the 
lower strings, which still involve important contributions 
from the higher frequency partials. The bridge mass and de-
sign can therefore strongly influence the sound of an instru-
ment. 

At low frequencies, the bowing forces cause the bridge to 
rock backward and forward on the island area. The resulting 
asymmetric rocking then allows components of the bowing 
force in the rocking direction to excite both antisymmetric 
and symmetric volume-changing modes. In particular, it en-
ables the vibrating strings to excite a single, volume-chang-
ing, breathing mode primarily responsible directly and indi-
rectly for almost all the sound radiated at frequencies in the 
signature mode frequency range (Gough, 2015b).  
In addition to radiating sound directly, the b1− breathing 
mode excites the a0 Helmholtz f-hole resonance. The cou-
pling between the component a0 and breathing modes re-
sults in a pair of A0 and B1 normal modes describing their 
in- and out-of-phase vibrations.

Once the frequencies of the A0 and B1 modes are known, 
their monopole source strengths are automatically fixed. 
This follows from what is colloquially known as the “tooth-
paste effect” or zero-frequency sum rule (Weinreich, 1985).  
Well below the a0 resonance, any inward flow of air into the 
cavity induced by the cavity wall vibrations will be matched 
by an equal outward flow through the f-holes. Because the 
source strengths of the coupled f-hole and breathing modes 
have to cancel at low frequencies, their contribution to the 
radiated sound is automatically determined throughout the 
signature mode frequency range, apart from the very small 
frequency range around their resonances when damping be-
comes important.

In practice, the strongly radiating breathing mode is also 

weakly coupled to the nonradiating bending mode of the 
body shell, illustrated to the right of the plot in Figure 6. 
This is a consequence of the different elastic properties of 
the arched top and back plates. When the shell breathes, the 
arched plate edges of the two plates move inward and out-
ward by different amounts. This induces a bending of the 
body shell like the bending of a bimetallic strip induced by 
the differential expansion of the dissimilar metals. This is 
the origin of the coupling between the b1− breathing and 
b1+ bending component modes of the body shell. This results 
in the pair of B1− and B1+ modes, with relative radiating 
strengths determined by the amplitude of the component 
breathing mode in each (Gough, 2015b). Such a model de-
scribes the dominant features of the typical low frequency 
acoustic response illustrated in Figure 4. 

The introduction of the offset soundpost results in a lo-
calized decrease and asymmetry of the shell-mode shapes 
across the island area between the f-holes. This and coupling 
to the f-hole mode result in a large increase in the compo-
nent breathing mode frequency, increasing its coupling to 
the component bending mode. It also accounts for the asym-
metric rocking of the bridge, enabling horizontal compo-
nents of the bowing forces to excite the strongly radiating 
breathing component of any its coupled modes. 

The soundpost and enclosed air also induce coupling of the 
breathing modes to the other nonradiating body shell modes 
and to the vibrational modes of all attached components like 
the neck, fingerboard, tailpiece, and strings. This is responsi-
ble for the additional weakly radiating normal modes appear-
ing as substructure in the acoustic response, as in Figure 4.

Modeling Violin Modes
A successful physical model for the resonant modes of the 
fully assembled violin needs to describe the relationship be-
tween the modes of the assembled body shell and those of 
the individual plates before assembly and to show how the 
body shell modes are affected by their coupling to the cav-
ity air modes within the shell walls, by the offset soundpost 
wedged between the top and back plates, the strings, and all 
other attached components like the neck, fingerboard, tail-
piece, strings, and even the player. 

Such a model is described in two recently published papers 
on the vibrations of both the individual plates and the as-
sembled shell (Gough, 2015a,b). COMSOL 3.5 Shell Struc-
ture finite-element software has been used to compute the 
modes of a slightly simplified model of the violin to dem-

Violin Acoustics
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onstrate and understand how the coupling between all its 
component parts influences the vibrational modes and their 
influence on the radiated sound. This has involved varying 
the influence of each component over a very wide range as an 
aid to understanding the nature of and effect of the coupling. 

To give a flavor of this approach, Figure 6 illustrates the 
transformation of the initially freely supported individu-
al plates into the modes of the empty body shell as the rib 
coupling strength is varied over six orders of magnitude 
from close to zero to a typical normal value. The highlight-
ed curves illustrate how the important radiating breathing 
mode of the body shell is transformed from the component 
#5 plate mode and its extremely strong interaction with the 
rising frequency bouncing mode of the rigid plates that are 
constrained by the extensional springlike and bending of the ribs.

There are many perhaps surprising and interesting features 
that such computations reveal, which are described in the 
downloadable supplementary text Modelling Violin Modes  
(http://acousticstoday.org/supplementary-text-violin-
acoustics-colin-e-gough/), which also gives suggestions for 
additional background reading. Here, I simply invite those 
interested to view Video 2, Video 3, and Video 4 which il-
lustrate the 3-dimensional vibrations of the A0, CBR, B1−, 
B1+, and higher frequency dipole modes computed first in 
vacuum, then with coupling to the air inside the cavity via 

the Helmholtz f-hole resonance, and finally with the offset 
soundpost added.

 Such computations validate and quantify a model for the 
violin and related instruments treating their modes as those 
of a thin-walled, guitar-shaped, shallow-box shell structure, 
with doubly-arched plates coupled together by the ribs, cav-
ity air modes, soundpost, and coupling to the vibrational 
modes of the neck-fingerboard assembly, the tailpiece, and 
strings. This model can be understood by standard coupled 
oscillator theory and, I believe, accounts for all known vi-
brational and acoustic properties of the violin and related 
instruments. 
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