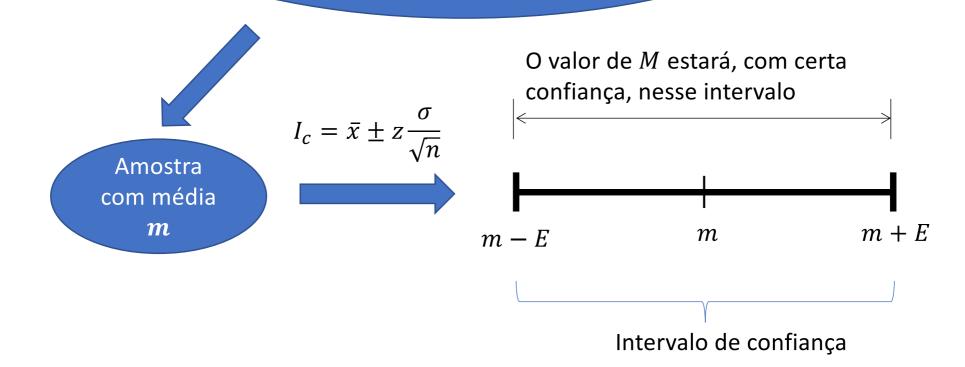
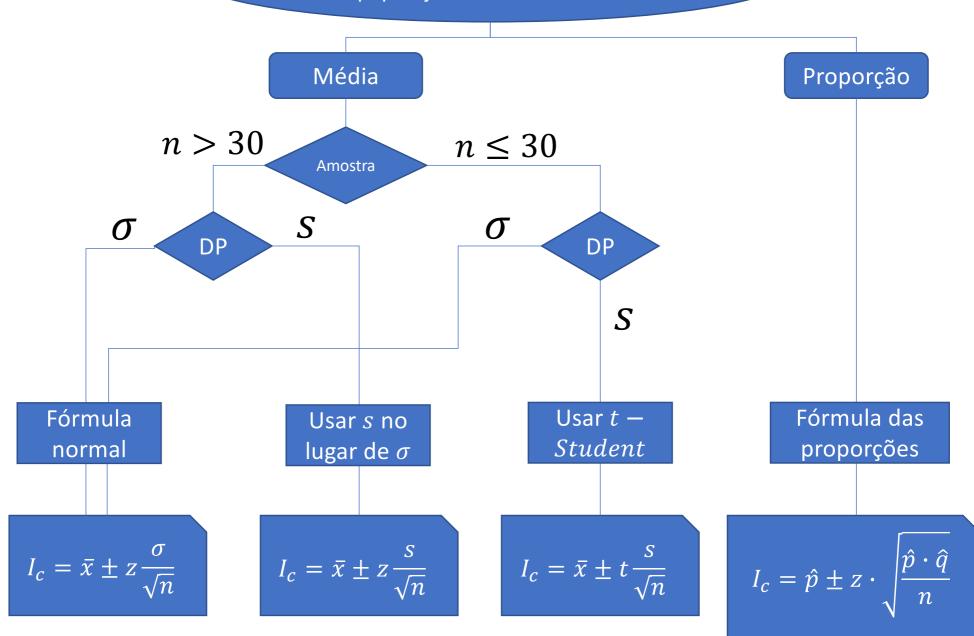
Estatística e Probabilidade

Encontro presencial, unidades 6 e 7


Detaques sobre:

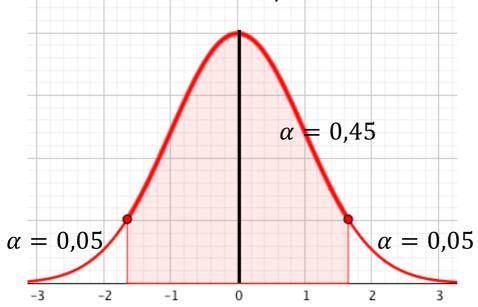
Estimação de média e proporção


Amostragem

Prof. Simões

População com média M desconhecida

Estimação de média ou proporção, populações normais infinitas



Como encontrar o valor de z

• Exemplo: "Determinar um intervalo de 90% de confiança..."

Como interessam os valores centrais, buscamos a área, fazemos $\frac{0.9}{2} = 0.45$ e

localizamos o z correspontente

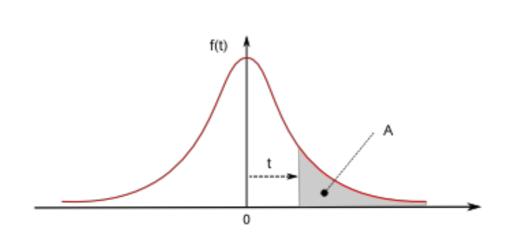
Na tabela, buscamos o z correspondente a 0,45

	$90\% \Rightarrow \frac{\alpha}{2} = 0.450 \Rightarrow z_{\frac{\alpha}{2}} = 1.65$
Valores mais usados: <	$95\% \Rightarrow \frac{\alpha}{2} = 0.475 \Rightarrow z_{\frac{\alpha}{2}} = 1.96$
	$99\% \Rightarrow \frac{\alpha}{2} = 0,495 \Rightarrow z_{\frac{\alpha}{2}} = 2,58$

Z	0	0,01	0,02	0,03	0,04	0,05	0,0
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0109	0,02
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,06
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,10
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,14
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,17
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,21
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,24
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,27
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,30
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,33
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,35
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,37
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,39
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,41
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,42
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,44
1,6	6,4452	0,4468	0,4474	0,4404	0,449	0,4505	0,45
1,7		0,4564	ı			0,4599	0,46

Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,				57	0,0596	0,0636	0,0675	0,0714	0,0753
0,2			α	U	,948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	o, 9()% =	\Rightarrow $-$	= $-$	31	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,		2		<u>2</u> <u>00</u>	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,	0.4	50 =	> 7 m	54	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,	U_j T	JU –	$\frac{7}{2} \frac{2u}{2}$	39	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,			2	04	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,	1,6	O		95	0,3023	0,3051	0,3078	0,3106	0,3133
0,9					64	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	6,4452	0,4403	0,4474	0,4404	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633

Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0					}	0,1406	0,1443	0,1480	0,1517
0,4	0				0.05)	0,1772	0,1808	0,1844	0,1879
0,5	0	5%	$\rightarrow \frac{a}{a}$		0,95	}	0,2123	0,2157	0,2190	0,2224
0,6	0	J 70	7	,	2		0,2454	0,2486	0,2517	0,2549
0,7	0			1			0,2764	0,2794	0,2823	0,2852
0,8	o U,	475	\Rightarrow	$Z\alpha =$	= 1,	96	0,3051	0,3078	0,3106	0,3133
0,9	0			2			0,3315	0,3340	0,3365	0,3389
1,0	0			4			0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4710	0,4726	0,4732	0,4738	0,47(14	0,4750	0,4756	0,4761	0,4767
	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	

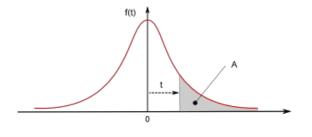

0,99 0,06 0,07 0,08 0,09 0,0359 $= 0.495 \Rightarrow z_{\underline{\alpha}}$ 0,0636 0,0675 0,0714 0,0753 0,4803 0,4808 0,4812 0,4817 = 2,580.48500.48570.48870,4896 0,4906 0,4898 0,4901 0,4904 0,4925 0,4927 0,4929 0,4931 0,4959 0,4960 0.4968 | 0.4969 | 0.4970

 Uma amostra de 35 veículos apresentou um consumo médio de 10,4 km/l, com desvio padrão de 2 km/l. Obtenha o intervalo de 95% para o verdadeiro consumo médio.

$$I_C = \bar{x} \pm z \frac{\sigma}{\sqrt{n}}$$
 Valores mais usados:
$$\begin{cases} 90\% \Rightarrow z_{\frac{\alpha}{2}} = 1,65\\ 95\% \Rightarrow z_{\frac{\alpha}{2}} = 1,96\\ 99\% \Rightarrow z_{\frac{\alpha}{2}} = 2,58 \end{cases}$$

$$I_c = 10.4 \pm 1.96 \frac{2}{\sqrt{35}} \Rightarrow I_c = 10.4 \pm 0.663$$

- Dez corpos de prova de concreto foram testados e a resistência média à compressão da amostra foi de 2.500 psi e o desvio-padrão foi de 45 psi. Obtenha uma estimativa para a verdadeira resistência média populacional com 95% de confiança.
- Obs.: a tabela t, diferente da z, utiliza a área da cauda. Por isso, para achar o t referente a 95%, por exemplo, entramos com o valor $100\%-95\%=5\%\Rightarrow0,05$


$$I_c = \bar{x} \pm t \frac{s}{\sqrt{n}}$$

$$I_c = 2500 \pm 2,262 \cdot \frac{45}{\sqrt{10}}$$

$$I_c = 2500 \pm 32,2$$

	Área em Uma Cauda								
	0,005	0,01	0,025	0,05	0,10				
Graus de	Área em Duas Caudas								
liberdade	0,01	0,02	0,05	0,10	0,20				
1	63,657	31,821		6,314	3,078				
2	9,925	6,965		2,920	1,886				
3	5,841	4,541		2,353	1,638				
4	4,604	3,747		2,132	1,533				
5	4,032	3,365		2,015	1,476				
6	3,707	3,143		1,943	1,440				
7	3,499	2,998		1,895	1,415				
8	3,355	2,896	V	1,860	1,397				
9 —			> 2,262	1,833	1,383				

Graus de liberdade = n - 1

Estimação de proporção

$$I_c = \hat{p} \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \cdot \hat{q}}{n}}$$

$$\hat{p} = \frac{x}{n} = \frac{itens\ da\ amostra}{tamanho\ da\ amostra}$$

$$\hat{q} = 1 - \hat{p}$$

 Em um lote de 150 tubos havia 21 não conformes. Obtenha o intervalo de 90% de confiança para a verdadeira proporção de tubos não conformes do fornecedor.

$$I_{c}=\hat{p}\pm z_{\frac{\alpha}{2}}\cdot\sqrt{\frac{\hat{p}\cdot\hat{q}}{n}}$$
 Valores mais usados:
$$\begin{cases} 90\%\Rightarrow z_{\frac{\alpha}{2}}=1,65\\ 95\%\Rightarrow z_{\frac{\alpha}{2}}=1,96\\ 99\%\Rightarrow z_{\frac{\alpha}{2}}=2,58 \end{cases}$$

$$\hat{p} = \frac{21}{150} = 0.14 \Rightarrow 14\%$$

$$I_c = 0.14 \pm 1.65 \cdot \sqrt{\frac{0.14 \cdot (1 - 0.14)}{150}} \Rightarrow I_c = 0.14 \pm 0.0467$$

$$I_c = 14\% \pm 4,67\%$$

Determinação do tamanho amostral

População Infinita: Equação 1

$$n = \frac{(Z_{\alpha/2})^2 \, \hat{p} \hat{q}}{E^2}$$

População Finita: Equação 2

$$n = \frac{N \,\hat{p}\hat{q} \,(z_{\alpha/2})^2}{\hat{p}\hat{q} \,(z_{\alpha/2})^2 + (N-1) \,E^2}$$

Estimar uma média populacional

População Infinita: Equação 3

$$n = \left[\frac{Z_{\alpha/2} \cdot \sigma}{E}\right]^2$$

População Finita: Equação 4

$$n = \frac{N(Z_{\sigma/2} \sigma)^2}{(N-1)E^2 + (Z_{\alpha/2} \sigma)^2}$$

Obs.: quando \hat{p} for desconhecido, usar 0,5

 Uma empresa fabricante de baterias automotivas desenvolveu um novo produto cuja vida média deseja estimar. De estudos anteriores, sabe-se que a vida média das baterias tem um desvio padrão de seis meses. Decidiuse que o nível de confiança do estudo será de 99% e a margem de erro máxima aceitável para a estimativa é de três meses. Determinar o tamanho amostral necessário para atender às exigências do estudo.

$$n = \left(\frac{Z \cdot \sigma}{E}\right)^{2}$$
Valores mais usados:
$$\begin{cases} 90\% \Rightarrow z_{\frac{\alpha}{2}} = 1,65 \\ 95\% \Rightarrow z_{\frac{\alpha}{2}} = 1,96 \\ 99\% \Rightarrow z_{\frac{\alpha}{2}} = 2,58 \end{cases}$$

$$n = \left(\frac{2,58 \cdot 6}{3}\right)^{2} = 26,6 \Rightarrow 27 \ tubos$$

Obs.: sempre arredondar para mais