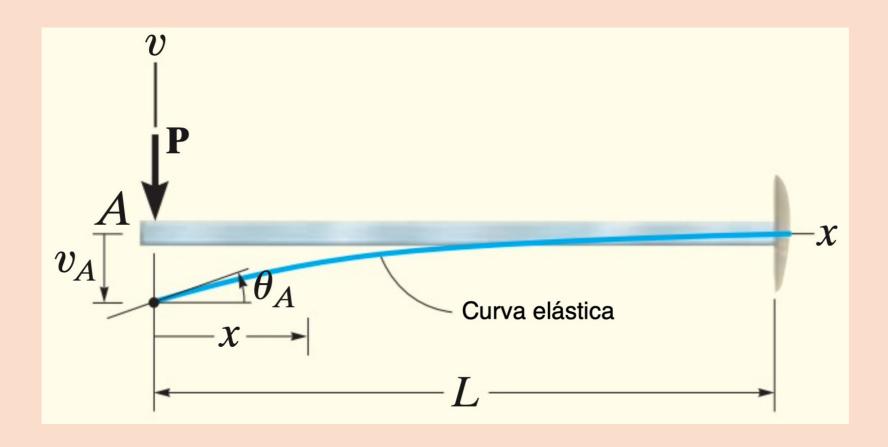
UC Resistência dos materiais e elementos de máquinas

Deflexão em vigas

Prof. Simões

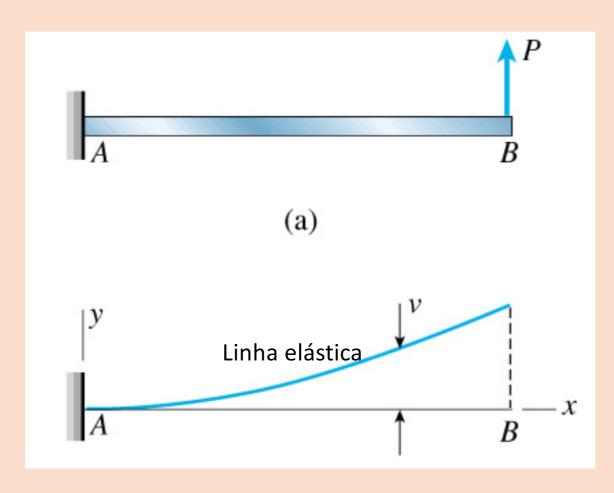
Ao final dessa aula você deverá ser capaz de:

Compreender o que é linha elástica

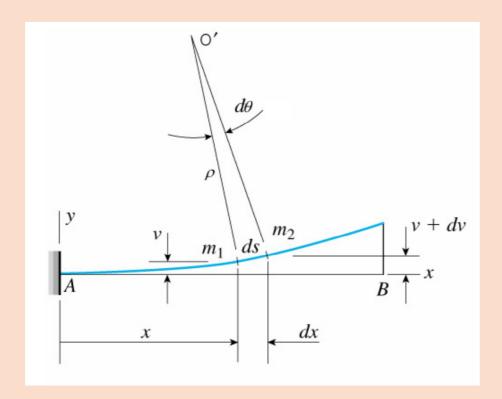

Definir sua função matemática

Determinar a equação da linha elástica em várias solicitações envolvendo cargas pontuais

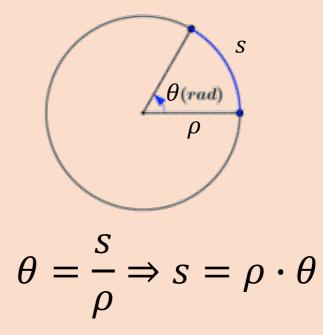
Calcular a deformação e ângulo de inclinações máximos e suas localizações em vigas sujeitas a cargas pontuais


Problema típico

• A viga em balanço abaixo está sujeita a uma carga P. Conhecendo-se o módulo de elasticidade do material e o momento de inércia da seção transversal, determine a deflexão máxima v_a e o ângulo de inclinação θ_A .

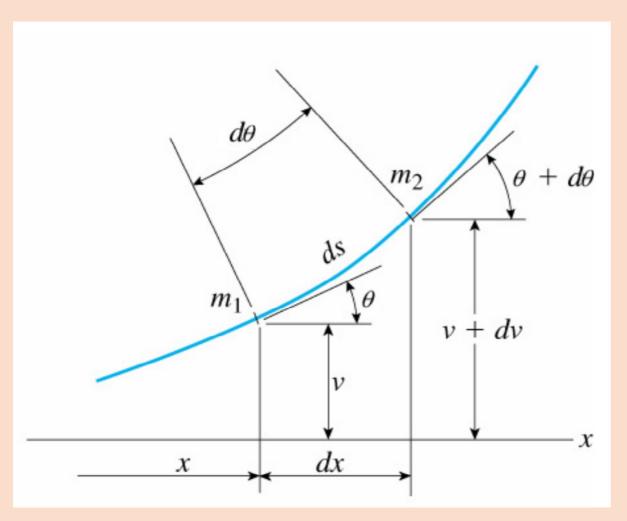

Linha elástica

• A linha que passa pelo centro de massa da viga, após sua deformação (v) é chamada de **linha elástica**.



Para o cálculo da deflexão máxima da viga é necessário calcular a **equação** da linha elástica.

• Usando, para fins de demonstração, uma viga em balanço engastada:



Da definição de radiano, temos que:

Portanto
$$ds = \rho \cdot d\theta$$
 ou $\frac{1}{\rho} = \frac{d\theta}{ds}$

• Também temos que:

$$\tan \theta = \frac{dv}{dx}$$

• Para pequenos ângulos (em radianos), podemos considerar:

$$ds \cong dx$$

$$\tan \theta \cong \theta$$

Exemplos:

 $\tan 0.1 = 0.09967$ $\tan 0.05 = 0.05004$ $\tan 0.01 = 0.01000$

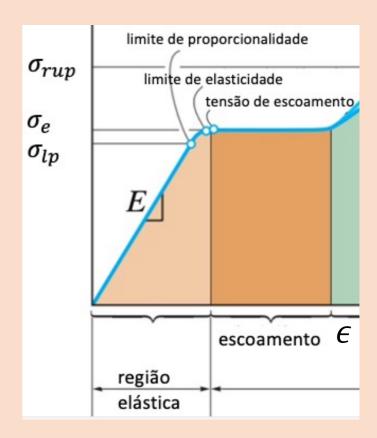
• Assim:

$$\frac{1}{\rho} = \frac{d\theta}{ds} = \frac{d\theta}{dx}$$
 e $\tan \theta = \frac{dv}{dx} = \theta$

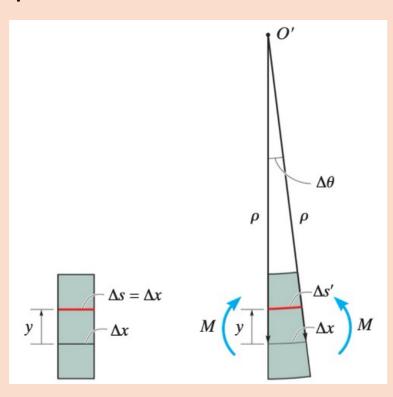
Portanto

$$\theta = \frac{dv}{dx} \implies \frac{d\theta}{dx} = \frac{d^2v}{dx^2} \implies \frac{1}{\rho} = \frac{d^2v}{dx^2}$$

 Considerando que a viga opera na região elástica, vale a lei de Hooke:


$$E = \frac{\sigma}{\epsilon} \Rightarrow \sigma = E \cdot \epsilon$$

• E já vimos que:


$$\sigma = \frac{M \cdot y}{I}$$

• Assim:

$$E \cdot \epsilon = \frac{M \cdot y}{I} \Rightarrow \frac{\varepsilon}{y} = \frac{M}{E \cdot I}$$

• Analisando uma pequena seção sob deformação ϵ , temos que:

$$\epsilon = \lim_{\Delta s \to 0} \frac{\Delta s' - \Delta s}{\Delta s}$$

$$\Delta s' = (\rho - y) \cdot \Delta \theta$$

$$\Delta s = \Delta x = \rho \cdot \Delta \theta$$

$$\Delta s \to 0 \equiv \Delta \theta \to 0$$

$$\epsilon = \lim_{\Delta\theta \to 0} \frac{(\rho - y) \cdot \Delta\theta - \rho \cdot \Delta\theta}{\rho \cdot \Delta\theta} \Rightarrow \epsilon = \frac{\rho - y - \rho}{\rho} \Rightarrow \epsilon = -\frac{y}{\rho}$$

 Veremos a convenção de sinais adiante. Por enquanto, consideremos:

$$\varepsilon = \frac{y}{\rho} \qquad \qquad \frac{\varepsilon}{y} = \frac{M}{E \cdot I}$$

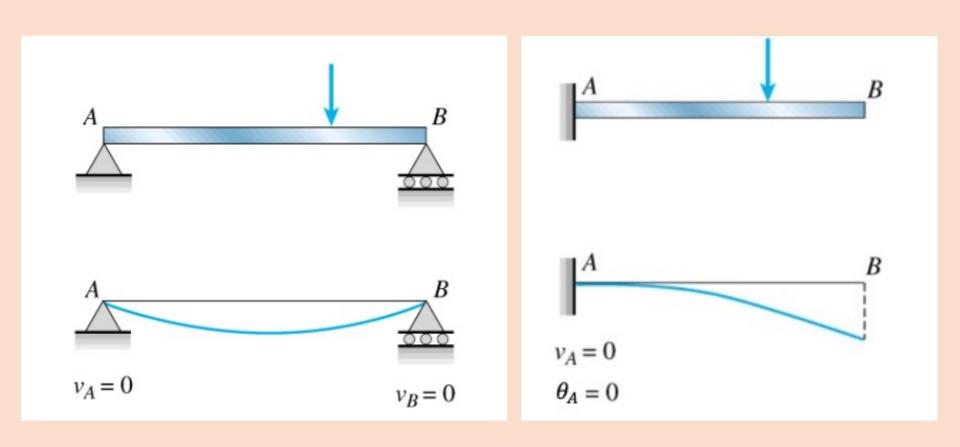
• Unindo-as, teremos:

$$\frac{y}{\rho \cdot y} = \frac{M}{E \cdot I} \Rightarrow \frac{1}{\rho} = \frac{M}{E \cdot I}$$

• Como $\frac{1}{\rho} = \frac{d^2v}{dx^2}$, temos então a equação da linha elástica:

$$\frac{d^2v}{dx^2} = \frac{M}{E \cdot I}$$

• Considerando que $E \cdot I$ seja constante (viga prismática), a deflexão será obtida por duas integrações da equação.

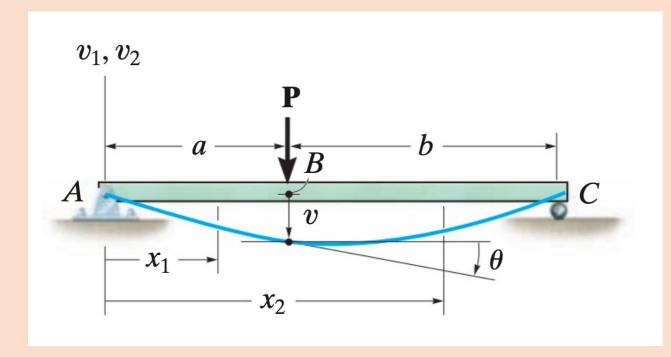

$$E \cdot I \cdot \frac{d^2 v}{dx^2} = M$$

• Observe que cada integração (indefinida) gerará uma constante de integração.

- As constantes de integração serão determinadas usando-se
 - As condições de contorno
 - As condições de continuidade

Condições de contorno

• Nos apois, temos:

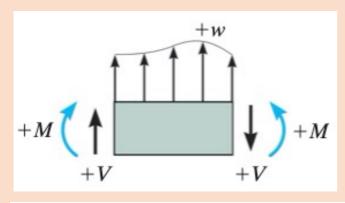

A deflexão nos apoios é nula

A deflexão e ângulo de inclinação são nulos no engaste

Condições de continuidade

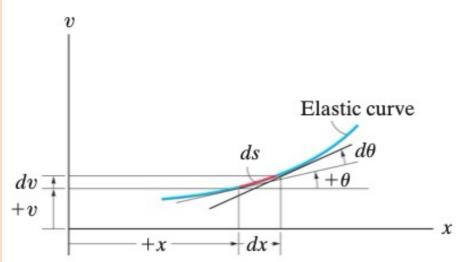
• A linha elástica deve ser fisicamente contínua. Em B:

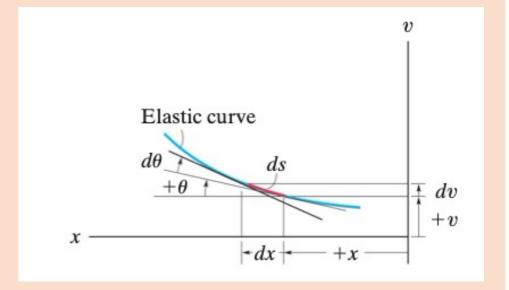
$$\theta = \theta_{1a} = \theta_{2a} \Rightarrow \frac{dv_1}{dx_1}\bigg|_a = \frac{dv_2}{dx_2}\bigg|_a \Rightarrow \begin{array}{l} \text{O ângulo de inclinação \'e} \\ \text{o mesmo dos dois lados} \\ \text{de B, ou seja, x_1 e x_2.} \end{array}$$



$$v = v_{1a} = v_{2a}$$
 \downarrow

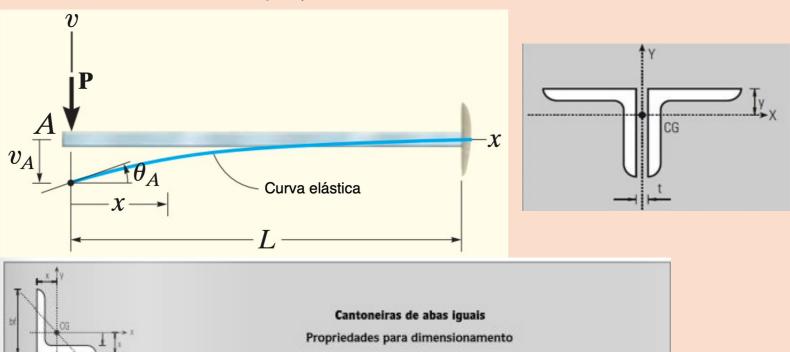
A deformação em B é a mesma, calculada por x_1 ou x_2 .


Convenção de sinais


São as seguintes

Se a força cortante tende a produzir um movimento horário, ela será positiva

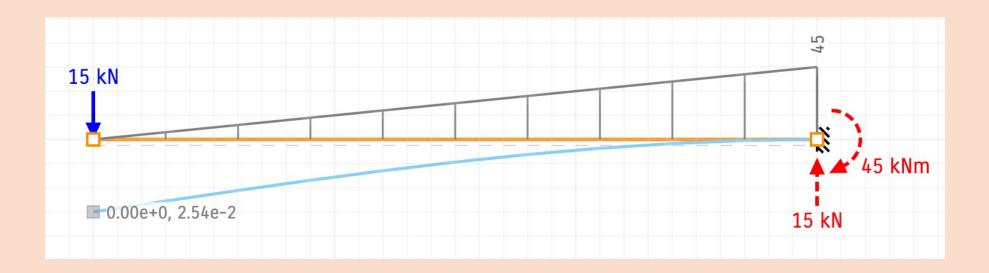
Se o momento fletor causa compressão nas fibras superiores, ele será positivo


Se a seção de análise caminhar para direita, o θ será positivo quando anti-horário.

Se a seção de análise caminhar para esqueda, o θ será positivo quando horário.

Procedimento

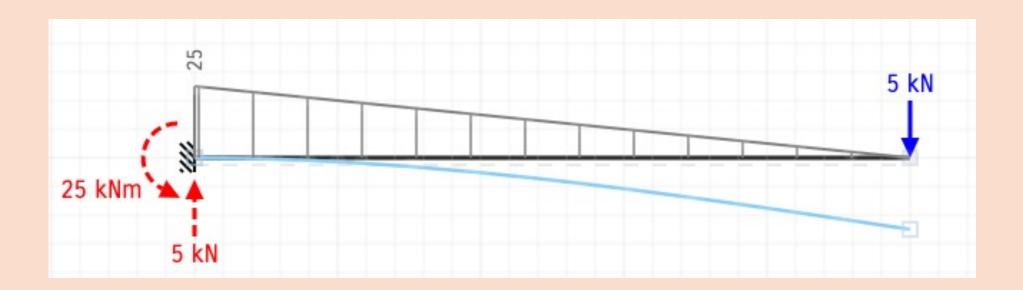
- O procedimento para o cálculo da deflexão, ângulo de inclinação e tensões máximas, pode ser resumido nas seguintes etapas
- 1. Reações nos apoios
- 2. Equações do momento fletor
- 3. Equação da linha elástica
 - 1. Condições de contorno
 - 2. Condições de continuidade
- 4. Cálculo da deflexão máxima
- 5. Cálculo do ângulo de inclinação
- 6. Cálculo das tensões máximas

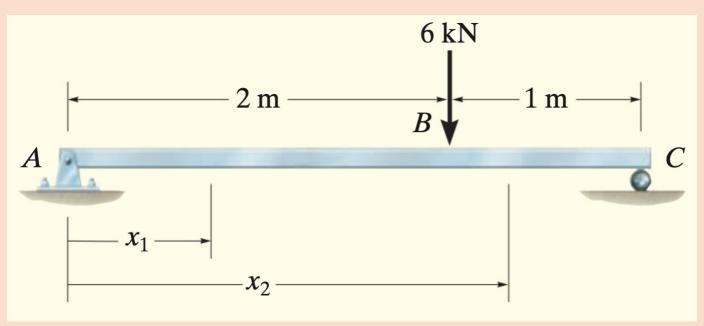

• Calcular a deformação máxima v_a , o ângulo de inclinação θ_A e as tensões máximas na viga engastada abaixo, cujo comprimento é de 3,0 m e suporta uma carga pontual de 15 kN. A viga é composta por duas cantoneiras de 6"x7/8", com módulo de elasticidade E=200~GPa.

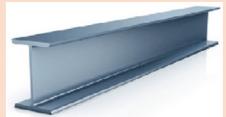
-	pt 1s				Propriedades para dimensionamento													
1	b _f	P	Α		t _f	$I_X = I_Y$	$W_x = W_y$	$r_x = r_y$	r _{z min}	X								
pol	cm	kg/m	cm ²	pol	cm	cm ⁴	cm ³	cm	cm	cm								
6"	15,240	22,22 29,20 36,00 42,70 49,30	28,12 37,09 45,86 54,44 62,76	3/8" 1/2" 5/8" 3/4" 7/8"	0,952 1,270 1,588 1,905 2,222	641,00 828,00 1.007,00 1.173,00 1.327,00	57,40 75,40 93,50 109,90 124,60	4,78 4,72 4,67 4,65 4,60	3,02 3,00 2,97 2,97 2,97	4.17 4.27 4.39 4.52 4.62								

• Respostas:

- $v_{m\acute{a}x} = 25,4 \ mm$
- $\theta_{m\acute{a}x} = 0.73^{\circ}$
- $\sigma_T = 78,3 \, MPa$
- $\sigma_C = 186 MPa$

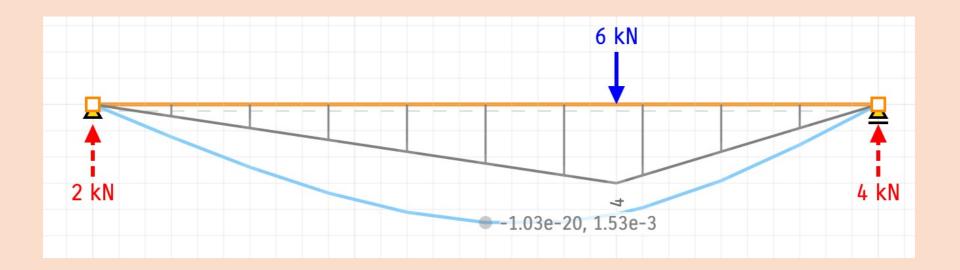

• Calcular a deformação máxima v_a , o ângulo de inclinação θ_A e as tensões máximas na viga engastada abaixo, cujo comprimento é de 5,0 m e suporta uma carga pontual de 5 kN na extremidade livre. A viga é composta pelo perfil I 10" da tabela, com módulo de elasticidade $E=200\ GPa$.

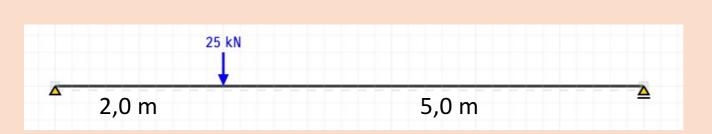

Perfil AxBxC	A	m _e	\overline{x}	\overline{y}	$\bar{I}_{x'}$	$ar{I}_{y}$,	$W_{x'}$	W_{y}	$k_{x'}$	k _y .	k_z
	cm ²	Kg/m	cm	cm	cm ⁴	cm ⁴	cm ³	cm ³	cm	cm	cm
I 10" x 4%" x 0.310"	48,1	37,7		-	5140	282	405	47,7	10,3	2,42	2,42
U 6" x 2" x 0.200"	15,5	12,2	1,30	-	546	28,8	71,7	8,20	5,94	1,36	1,36
L 4" x 4" x ¾"	18,5	14,6	2,90	2,90	183	183	24,6	24,6	3,12	3,12	2,00
L 6" x 4" x ¾"	23,3	18,3	2,39	4,93	562	204	54	26	4,90	2,97	2,24

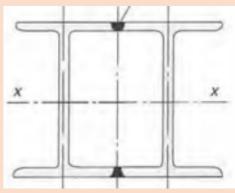

Respostas

- $v_{m\acute{a}x} = 20,3 \ mm$
- $\theta_{m\acute{a}x} = 0.348^{\circ}$
- $\sigma_T = 61.8 \, MPa$
- $\sigma_C = 61.8 \, MPa$

• Calcular a deformação e ângulo de inclinação máximos e as tensões máximas na viga abaixo. O perfil a ser usado é o W 150 x 18,0, com módulo de elasticidade $E=200\ GPa$.

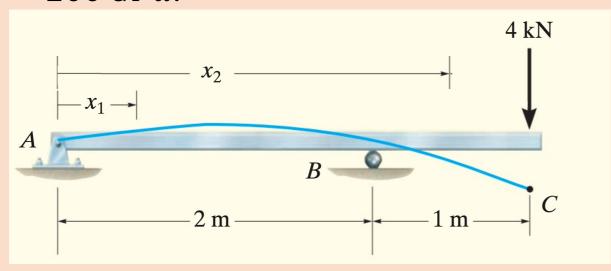


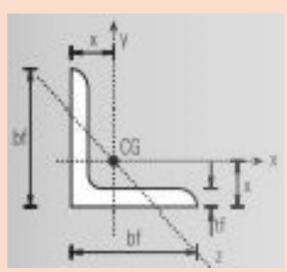

	Massa			ESPES	SPESSURA			£		EIXO Y - Y						
BITOLA mm x kg/m	Linear Kg/m	d	br	tw	Ħ	h	mm q.	Area cm ²	Ix	Wx	rx	Zx	Iy	W _y	ry	Z _y
		mm	mm	mm	mm mm				cm ⁴	cm ³	cm	cm ³	cm ⁴		cm	
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	96,4	82	16,4	2,22	25,5
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	139,4	126	24,7	2,32	38,5
W 150 x 22,5 (H)	22,5	152	152	5,8	6,6	139	119	29,0	1229	161,7	6,51	179,6	387	50,9	3,65	77,9


• Respostas:

- $v_{m\acute{a}x} = 1,54 \ mm \ em \ x = 1,64 \ m$
- $\theta_A = 0.081^{\circ}$
- $\theta_B = 0.102^{\circ}$
- $\sigma_T = 32,6 \, MPa$
- $\sigma_C = 32,6 \, MPa$

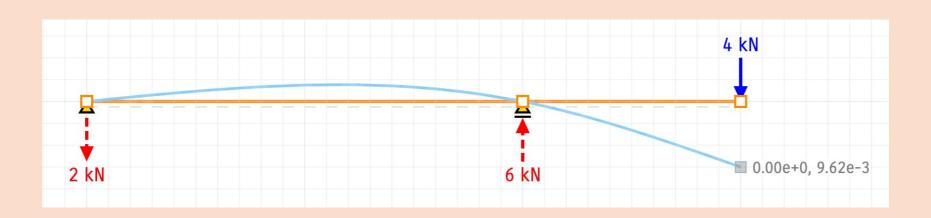
• Calcular a deformação e ângulo de inclinação máximos e as tensões máximas na viga abaixo. Serão usados dois perfis W 150 x 22,5, lado a lado, com módulo de elasticidade $E=200\ GPa$.

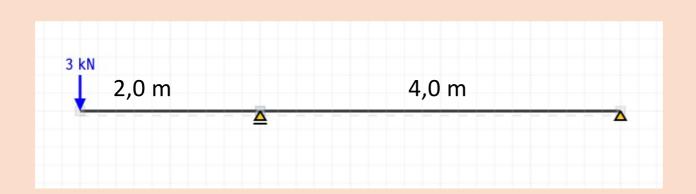

	Massa			ESPES	SURA			Á-00		EIXO Y - Y						
BITOLA mm x kg/m	Linear Kg/m	d	br	tw		mm	q,	Area cm ²	Ix	Wx	rx	Zx	Iy cm ⁴	Wy	ry cm	Z _y
		mm	mm	mm			mm		cm ⁴	cm ³	cm	cm ³		cm ³		
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	96,4	82	16,4	2,22	25,5
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	139,4	126	24,7	2,32	38,5
W 150 x 22,5 (H)	22,5	152	152	5,8	6,6	139	119	29,0	1229	161,7	6,51	179,6	387	50,9	3,65	77,9

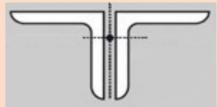

• Respostas:

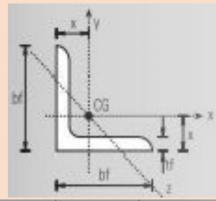
- $v_{m\acute{a}x} = 28,2 \ mm \ em \ x = 3,24 \ m$
- $\theta_1 = 0.84^{\circ}$
- $\theta_2 = 0.63^{\circ}$
- $\sigma_T = 110 MPa$
- $\sigma_C = 110 MPa$

• Calcular a deformação e ângulo de inclinação máximos e as tensões máximas na viga abaixo. Será utilizada uma cantoneira de 4"x7/16", com módulo de elasticidade $E=200\ GPa$.




bf		P A			t _f	$l_x = l_y$	$W_x = W_y$	$r_x = r_y$	$r_{z \min}$	X	
pol	cm	kg/m	cm ²	pol	cm	cm ⁴	cm ³	cm	cm	cm	
4"	10,160	9,81 12,19 14,57 16,80 19,03 21,26 23,35	12,51 15,48 18,45 21,35 24,19 26,96 29,73	1/4" 5/16" 3/8" 7/16" 1/2" 9/16" 5/8"	0,635 0,794 0,952 1,111 1,270 1,429 1,588	125,00 154,00 183,00 208,00 233,00 254,00 279,00	16,40 21,30 24,60 29,50 32,80 36,10 39,40	3,17 3,15 3,12 3,12 3,10 3,07 3,05	2,00 2,00 2,00 1,98 1,98 1,98 1,96	2,77 2,84 2,90 2,95 3,00 3,07 3,12	


• Respostas:


- $v_{m\acute{a}x_{AB}} = 2,47 \ mm$
- $v_{m\acute{a}x_{BC}} = -9,62 \ mm$
- $\theta_{m\acute{a}x_{AB}} = 0.184^{\circ}$
- $\theta_{m\acute{a}x_{BC}} = 0,643^{\circ}$
- $\sigma_T = 56,7 MPa$
- $\sigma_C = 139 \, MPa$

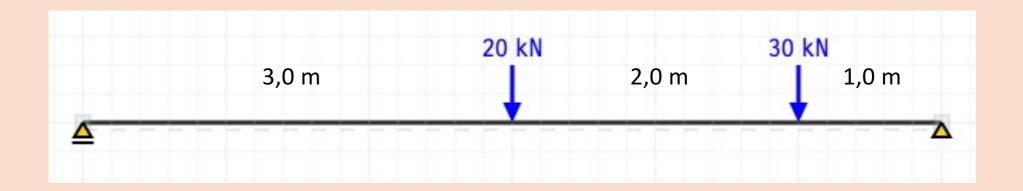
• Calcular a deformação e as tensões máximas na viga abaixo. Serão utilizadas duas cantoneiras de 4"x 9/16", conforme figura, com módulo de elasticidade $E=200\ GPa$.

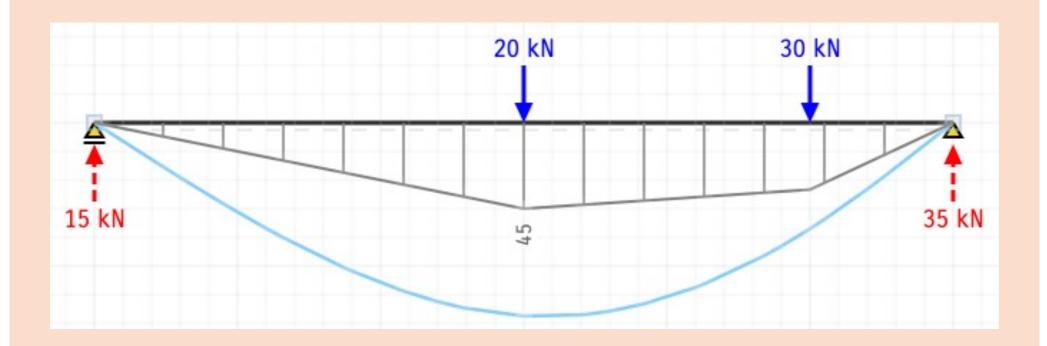


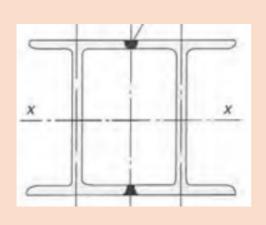
bf		P	Α	A t _f			$W_x = W_y$	$r_x = r_y$	rzmin	X
pol	cm	kg/m	cm ²	pol	cm	cm ⁴	cm ³	cm	cm	cm
4"	10,160	9,81 12,19 14,57 16,80 19,03 21,26 23,35	12,51 15,48 18,45 21,35 24,19 26,96 29,73	1/4" 5/16" 3/8" 7/16" 1/2" 9/16" 5/8"	0,635 0,794 0,952 1,111 1,270 1,429 1,588	125,00 154,00 183,00 208,00 233,00 254,00 279,00	16,40 21,30 24,60 29,50 32,80 36,10 39,40	3,17 3,15 3,12 3,12 3,10 3,07 3,05	2,00 2,00 2,00 1,98 1,98 1,98 1,96	2,77 2,84 2,90 2,95 3,00 3,07 3,12

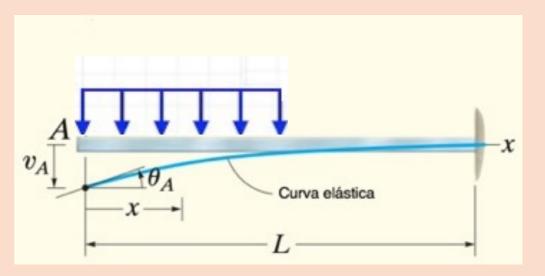
• Respostas:

- $v_{m\acute{a}x} = 23,6 \ mm$
- $\sigma_T = 36,3 \, MPa$
- $\sigma_C = 83,7 \, MPa$

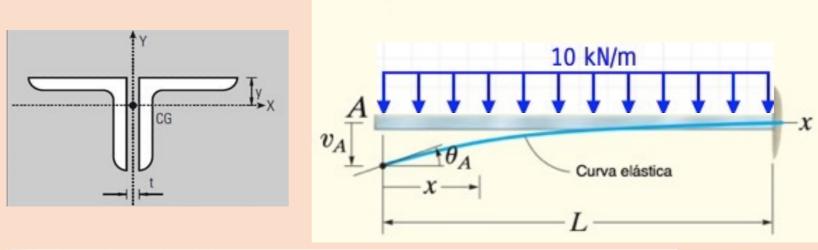

• Um perfil com $I_x=6500\ cm^4$, com um aço de $E=200\ GPa$ será usado na estrutura abaixo. Calcule a deformação máxima da linha elástica

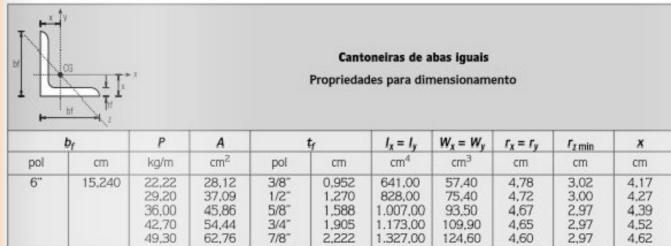

- Resposta
 - $v_{m\acute{a}x} = 1,33 \ mm \ em \ x = 2,91 \ m$


• Um perfil com $I_x=6000\ cm^4$, com um aço de $E=200\ GPa$ será usado na estrutura abaixo. Calcule a deformação máxima da linha elástica



- Resposta
 - $v_{m\acute{a}x} = 13,1 \ mm \ em \ x = 3,15 \ m$
 - $\theta_1 = 0.35^{\circ}$
 - $\theta_3 = 0.43^{\circ}$


• Calcular a deformação máxima v_a , o ângulo de inclinação θ_A e as tensões máximas na viga engastada abaixo, cujo comprimento é de 5,0 m e suporta uma carga distribuída de 3,0 kNm da extremidade até a metade do comprimento. Serão usados dois perfis W 150 x 22,5, lado a lado, com módulo de elasticidade $E=200\ GPa$.



	Massa		120	ESPESSURA			Área		EIXO Y - Y							
BITOLA mm x kg/m	Linear Kg/m	d	br	tw	tr	h	q.	cm ²	Ix	Wx	rx	Zx	Iy	Wy	ry	Zy
		mm	mm	mm	mm	mm	mm		cm ⁴ cm ³		cm	cm ³	cm ⁴	cm ³	cm	cm ³
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	96,4	82	16,4	2,22	25,5
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	139,4	126	24,7	2,32	38,5
W 150 x 22,5 (H)	22,5	152	152	5,8	6,6	139	119	29,0	1229	161,7	6,51	179,6	387	50,9	3,65	77,9

• Calcular a deformação máxima v_a e o ângulo de inclinação θ_A na viga engastada abaixo, cujo comprimento é de 5,0 m e suporta uma carga distribuída de 10 kNm. A viga é composta por duas cantoneiras de 6"x7/8", com módulo de elasticidade E=200~GPa.

Exercício 5 - respostas

Displacements

dZ2 0.1472 dR2 -0.03925 max. displace 0.1472 at 5.000

min. displace 0.00000000000 at 0.000000000000

Moments

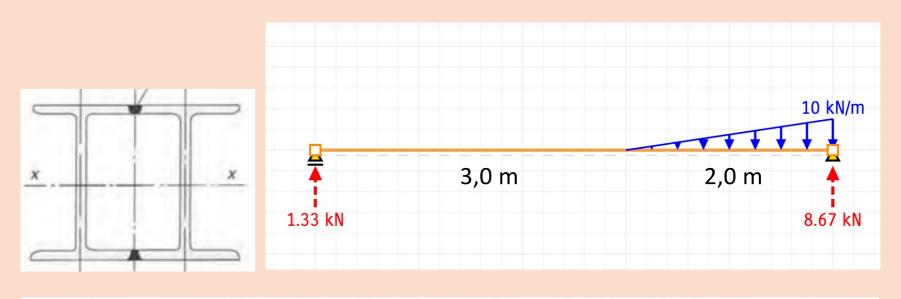
M1 -125.0

M2 0.000000000000

Mmin -125.0 at 0.000000000000 Mmax 0.00000000000 at 5.000

Shear Forces

V1 50.00


V2 0.000000000000

Vmin 0.00000000000 at 5.000 Vmax 50.00 at 0.00000000000

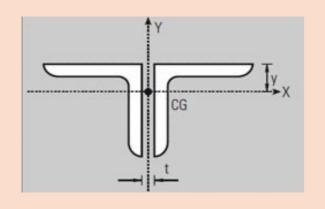
Normal Forces

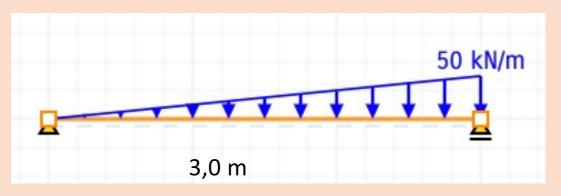
N1 0.00000000000 N2 0.00000000000

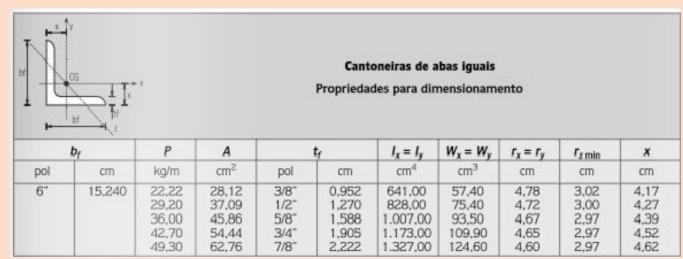
• Calcular a deformação máxima, os ângulos de inclinaçãos nos apoios e as tensões máximas na viga engastada abaixo. Serão usados dois perfis W 150 x 22,5, lado a lado, com módulo de elasticidade $E=200\ GPa$.

BITOLA mm x kg/m	Massa			ESPESSURA				Área		EIXO	EIXO Y - Y					
	Linear Kg/m	d	br	t _W t _f	h	q.	Area	Ix	Wx	rx	Zx	Iy	Wy	ry	z _y	
		mm	mm		mm	mm	mm	cm ²	cm ⁴	cm ³	cm	cm ³	cm ⁴	cm ³	cm	cm ³
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	96,4	82	16,4	2,22	25,5
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	139,4	126	24,7	2,32	38,5
W 150 x 22,5 (H)	22,5	152	152	5,8	6,6	139	119	29,0	1229	161,7	6,51	179,6	387	50,9	3,65	77,9

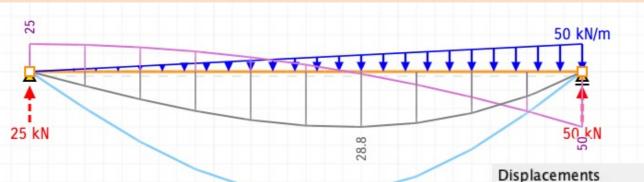
Exemplo 6 - respostas


• Segmento esquerdo


Displacements dX1 0.000000000000 dZ1 0.000000000000 dR1 -0.001076 dX2 0.000000000000 dZ2 0.002007 dR2 0.0001447 max. displace 0.002020 at 2.817 min. displace 0.000000000000 at 0.000000000000 Moments M1 0.000000000000 M2 4.000 Mmin 0.000000000000 at 0.000000000000 Mmax 4.000 at 3.000 **Shear Forces** V1 1.333 V2 1.333 Vmin 1.333 at 0.0000000000000 Vmax 1.333 at 0.0000000000000 **Normal Forces** N1 0.00000000000 N2 0.000000000000


Segmento direito

Displacements	
dX1	0.00000000000
dZ1	0.002007
dR1	0.0001447
dX2	0.00000000000
dZ2	0.00000000000
dR2	0.001636
max. displace	0.002007 at 0.000000000000
min. displace	0.000000000000 at 2.000
Moments	
M1	4.000
M2	0.00000000000
Mmin	0.000000000000 at 2.000
Mmax	4.649 at 0.7303
Shear Forces	
V1	1.333
V2	-8.667
Vmin	-8.667 at 2.000
Vmax	1.333 at 0.000000000000
Normal Forces	
N1	0.00000000000
N2	0.00000000000


• Calcular a deformação máxima, os ângulos de inclinaçãos nos apoios e as tensões máximas na viga engastada abaixo. Serão usados dois perfis 6" x 7/8", lado a lado, com módulo de elasticidade $E=200\ GPa$.

Respostas

 $\sigma_c = 50,4 MPa$ $\sigma_T = 116 MPa$

dX1 0.000000000000 dZ1 0.000000000000 dR1 -0.004945 dX2 0.000000000000 dZ2 0.000000000000

dR2 0.005652

max. displace 0.004976 at 1.558

min. displace 0.000000000000 at 0.000000000000

Moments

M1 0.000000000000 M2 0.000000000000

Mmin 0.000000000000 at 3.000

28.87 at 1.732 Mmax

Shear Forces

٧1 25.00 -50.00 V2

Vmin -50.00 at 3.000

Vmax 25.00 at 0.000000000000

Normal Forces

0.000000000000 N1 N2 0.000000000000

Ao final dessa aula você deve ser capaz de:

Compreender o que é linha elástica

Definir sua função matemática

Determinar a equação da linha elástica em várias solicitações envolvendo cargas pontuais

Calcular a deformação e ângulo de inclinações máximos e suas localizações em vigas sujeitas a cargas pontuais