
Error Correcting Codes: An Introduction
Through Problems

Jim Carlson

November 19, 1999

Contents

1 Introduction 1

2 Mathematics for codes 2

3 Codes over F2 5

4 Final remarks 8

1 Introduction

Error correcting codes make possible much of digital technology, from modems
to cell phones to compact disk players. The problem is to send a message across a
noisy channel with perfect fidelity, or at least with as much fidelity as possible.
Below we will describe the theory of these codes. It is based on some ideas
from “modern algebra,” including finite number systems called rings and fields.
We’ll learn about these, but let’s first think about digital messages. Whether
they represent a newspaper article, a musical performance, a conversation, or a
painting, they consists of a sequence of 0’s and 1’s. A message might look like
this:

011010110010 ... (1)

However, noise can change bits of information: some 0’s might get changed to
1’s and vice versa as the message moves from sender to receiver. Thus the above
message might be received as

011110110000 ... (2)

In this case two bits, the ones in positions 4 and 11 were changed. One way to
improve the fidelity of transmission is to repeat all bits three times, then decode
by “majority rules.” To see how this works, we first encode the message (2) as

000 111 111 111 000 111 000 111 111 000 000 111 000 ... (3)

1



Now suppose that, just as before, bit errors occur in positions 4 and 11, so that
the receiver sees the sequence

000 011 111 101 000 111 000 111 111 000 000 111 000 ... (4)

Then the second and fourth blocks are not among the legitimate codewords 000
and 111, and so we know that an error has occured. Moreover, according to the
logic of “majority rules,” the second block should be decoded as a 1, as should
be the fourth block. However, suppose that 111 was sent and that two bits were
changed, so that 010 was received. Again, we know that an error has occured.
Unfortunately, majority logic gives the wrong answer in this case.

What we have described is the simplest example of an error-correcting code.
It has just two codewords, 000 and 111, out of the eight possible three-bit
message sequences 000, 001, 010, etc. Even though it does not completely
eliminate the possibility of error, it reduces the chance of it. Suppose, for
instance, that the probability of a one-bit change is 0.01, and that errors are
“statistically independent.” Then the probability of a two-bit change in one
three-bit block is 3 × 0.99 × 0.012 = 0.000297. Thus the error rate is reduced
by a factor of about thirty.

The error reduction is good, but there is a cost to be paid for it: information
is transmitted three times more slowly than if the error correcting code is not
used. Now a remarkable theorem of Claude Shannon [4] discovered in 1948
shows that it is possible to have the best of both worlds: good error correction
and a fast transmission rate. More precisely, there is a code which transmits
information at a rate as close to the capacity of the trasmission channel as
one likes, but which makes the error rate as low as one likes. The difficulty is
that Shannon’s theorem does not tell us how to design such marvelous codes.
The first progress toward the goal he set was made two years later by Richard
Hamming [2], like Shannon a mathematician working at Bell Labs.

The Hamming codes and their more sophisticated descendants — the ones
used now in compact disk recordings, cell phones, satellite communications,
etc. — are based algebraic ideas that have their origin in the number-theoretic
research of Gauss, around 1801. In the next section we will explain some of
this mathematics, and then we explain how the Hamming code works. For
more information, see the references. Two good places to start are the book by
Lindsay Childs [1] and the article about the work of Richard Hamming [3].

2 Mathematics for codes

Error correcting codes are based on number systems with only finitely many
elements. To describe them, we begin with familiar, infinite number systems
and introduce some basic vocubulary. Consider first the integers, that is, the
positive and negative whole numbers together with zero, which we write like
this:

Z = { . . . − 2, −1, 0, 1, 2, . . . } (5)

2



It is an example of a commutative ring: a set of things with an operation of
addition and an operation of multiplication that obey the usual rules. Among
these rules are the two commutative laws: a+b = b+a and ab = ba for all a and
b. (There are also structures called noncommutative rings, for which ab 6= ba).

Consider next the rational numbers, that is, the set of positive and negative
fractions, together with zero:

Q = { a/b | a, b ∈ Z, b 6= 0 } (6)

It is a ring, but also an example of a field. In a field the equation ax = 1 has
a solution if a 6= 0. This solution (which is unique) is called the multiplicative
inverse of a, and it is what makes division possible: b/a = bx. Other familiar
fields are the real numbers, written R, and represented by possibly infinite
decimal expansions, and the complex numbers C, obtained by adjoining

√
−1

to R.
To build error-correcting codes we will use a kind of arithmetic different from

the one we find in familiar rings and fields such as Z and Q. All these new rings
will have finitely many elements, which makes them easy to store or represent
in a computer. The smallest field has just two elements, 0 and 1, standing for
“off” and “on,” respectively. It is called F2 — F for field and 2 for the number
of elements it has. The addition and multiplication tables for F2 are as follows.

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

(7)

It turns out there are other finite fields, for example, ones with three, four, or
five elements. We call them F3, F4, F5, etc. However, there is no field with six
elements. (Sorry, it’s a theorem!)

Problem 1 Show that the law a + a holds for all a in F2.

Let’s now choose a field of numbers to work with — it could be Q or it
could be F2, for example. In order to be as nonspecific as possible, we’ll call it
K. Then we can think about vectors with components in K. These are objects
of the form (1,0) or (0, 1, 0), or (0, 1, 0, 1), etc. More generally, a vector is an
n-tuple (a1, a2, . . . , an), and we call the set of all such vectors Kn.

The good thing about vectors is that they can be added. We do this by
adding their components:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) (8)

Let’s do an example, but with K = F2:

(0,1, 1,0) + (1, 0,1, 0) = (0 + 1,1 + 0, 1 + 1, 0 + 0) = (1, 1, 0,0) (9)

There is also a way of multiplying vectors: we multiply corresponding compo-
nents, then add up the results.

(a1, a2, . . . , an) · (b1, b2, . . . , bn) = a1b1 + a2b2 + . . . + anbn (10)

3



This is called the dot product. For example,

(1,1, 1, 0) · (1, 0, 1,0) = 1 + 0 + 1 + 0 = 0 (11)

Note that we’ve worked with K = F2.
If we put elements of a field into a rectangular array, we get something called

a matrix. Below is a matrix with four rows and four columns, and we have shown
how to multiply it by a four by one matrix, which we think of as a vector.




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0







1
1
1
1


 =




0
0
0
1


 (12)

The multiplication rule is simple: to get i-th element of the product, take the
dot product of the i-th row of the matrix with the given vector. Thus the first
element of the product is

(1,1, 0, 0) · (1, 1, 1,1) = 1 + 1 + 0 + 0 = 0 (13)

Problem 2 Check that the preceding matrix calculation is correct! What would
the result be if we were working over the field of rational numbers or the ring of
integers?

Problem 3 How many vectors are there in F4
2? Now consider the set of vectors

(x, y, z, w) in F4
2 satisfying the equation x+y+z+w = 0. We’ll call the solution

set C. How many elements does C have? What happens when two vectors in C
are added together?

The theory of vectors, matrices, and linear equations over F2 will be enough
to understand the Hamming code. For the modern codes used in today’s digital
devices one needs more mathematics, including the theory of polyomial equa-
tions over F2. The really good codes that correct multiple errors and bursts of
errors use the theory of polynomial equations over a finite field. As a warm-up
exercise to see what kind of math is involved, let’s see what happens when we
multiply two polynomials over F2:

(x + 1)(x + 1) = (1 × 1)x2 + (1 + 1)x + 1 = x2 + 1 (14)

That was easy enough! Note that we have stumbled across a little theorem: over
F2, unlike over R, the polynomial x2 + 1 factors. Said differently, the equation
x2 + 1 = 0 has root. Which root? It is x = 1! We can check this, of course:

(1)2 + 1 = 1 + 1 = 0 (15)

Problem 4 Does the polynomial x2 + x + 1 factor over F2. Does it have any
roots in F2? Consider the same problem for x3 + 1 and x4 + 1.

4



The set of all polynomials with coefficients in K is called “K[x]” — K for the
field of coefficients and x for the variable. The structure K[x] is a ring: we can
add, subtract, and multiply polynomials in K[x] and get polynomial in K[x] as
a result, but we can’t generally divide polynomials and get a polynomial back.
However, K[x] is a really good ring, like the integers: every polynomial can
be uniquely factored into irreducibles, just like every integer can be uniquely
factored into primes. Irreducibles are polynomials that can’t be factored into
polynomials of lower degree.

Problem 5 Show that x2 + x + 1 is irreducible in F2[x]. Factor x4 + 1 into
irreducibles in F2[x]. Finally, make up a problem of your own, and solve it.

3 Codes over F2

We are now going to use what we have learned about vectors and matrices over
F2 to design better codes: codes which correct errors well but are still efficient,
To get a good measure of efficiency, let’s look at our old friend, the triple repeat
code. We can think of it as defined by the function

c(x) = (x, x, x) (16)

The function c takes in a bit of information x and then spews out a code word
c(x). Thus c(0) = (0, 0,0) and c(1) = (1, 1, 1). In this case the rate of the code
is 1/3, since one bit of information determines all three bits in the code word.
Our general measure is

rate =
length of x

length of c(x)
(17)

Let’s see if we can make a more efficient code (one with a better rate) using
a different function. Here is one try:

c(x, y) = (x, y, x + y) (18)

It is easy to recognize a code word, and hence to recognize when an error has
occured. The sum of the components of c(x, y) is x + y +(x+ y). Using the law
a + a = 0 which holds in F2, we see that the sum is zero. Thus if we receive
(1, 1, 1), we know that an error has occured.

The code we have just defined is a parity code: computing in the integers,
the sum of the components of a codeword is even. It is not a bad code — it’s
rate is 2/3, and so it transmits information more efficiently than does the triple
repeat code. However, while it can detect errors, it cannot correct them. To see
why, we introduce the Hamming distance between two vectors:

H(v, w) = number of positions in which v and w differ (19)

Thus the Hamming distance between (1, 1,1) and (1, 1,0) is 1, while the distance
between (1, 1,1) and (1, 0, 0) is 2. We now ask the question: what is the code-
word closest to (1, 1, 1)? The answer is that there are three such codewords, all

5



at distance 1: (0,1, 1), (1,0, 1), and (1,1, 0). All possibilities are equally likely,
so there is no way of correcting the error in (1, 1,1)

Problem 6 Consider the triple repeat code. What codewords are closest to
(1, 1, 0)? Describe the set of vectors at distance 1 or less from the codeword
(0, 0, 0). Do the same for the set of vectors at distance 1 or less from the
codeword (1, 1, 1). What is the relation between these two sets? (We think
of them as balls of radius one around the respective codewords.) What is the
distance between the codewords (0, 0,0) and (1, 1, 1)?

The last problem gives us several important hints. The first is that the way
to decode a corrupted message vector is to find the codeword that is closest to
it. This “minimum distance decoding” what all codes used in practice do. The
second, which may not be quite so clear, is that when the minimum distance
between codewords is large, more errors can be corrected. In fact, if the min-
imum distance is 2r + 1, then r errors can be corrected. (Ths is a theorem.)
Thus, in the case of the triple repeat code, the minimum distance is three, and
one error can be corrected.

Problem 7 What is the minimum distance for the parity code c(x, y) = (x, y, x+
y)?

We now see why it is going to be hard to design codes do both things well:
transmit information efficiently, and correct many errors. For the first, we want
the set of codewords to be large compared to the set of all possible bit sequences
Fn

2 . For the first we want the distance between codewords to be large.
Let’s note that our two codes — parity and triple repeat — can be described

by equations as well as by functions. The set of codewords C for the parity
code is the same as the set of solutions of the equation x + y + z = 0. he set of
codewords C for the triple-repeat code is the same as the set of solutions of the
system of equations x + y = 0, y + z = 0.

Problem 8 Check the statements made in the last paragraph.

We now come to the Hamming code, which can correct a single error, but
which has a better rate than the triple repeat code. matrix

H =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


 (20)

and which appears on the Hamming IEEE medal, one of the highest awards
bestowed by the Institute of Electrical and Electronic Engineers. The set of
codewords C is the set of solutions of the equation

Hv = 0 (21)

6



where

v =




x
y
p
z
q
r
s




(22)

If we write out (21) we obtain the system of linear equations

x + p + q + s = 0
y + p + r + s = 0 (23)
z + q + r + s = 0

This tells us how to form a codeword from bits p, q, r, s:

c(p, q, r, s) = (p + q + s, p + r + s, p, q + r + s, q, r, s) (24)

It also tells us that the rate of the code is 4/7 — four information bits in a 7-bit
codeword. Thus the Hamming code has a better rate than the triple repeat
code.

What about error detection and correction? Detection is easy. Suppose,
for example, that we want transmit the message 1010. Then c(1, 0, 1,0) =
(1, 0, 1,1, 0, 1,0). Now suppose that the first bit is changed, so that v = (0, 0, 1, 1, 0,1, 0)
is received. We compute

Hv =




1
0
0


 (25)

Since Hv 6= 0, the v is not a codeword, and so an error must have occured. But
our result tells us even more (it turns out). The vector Hv, tipped over on its
side reads 001. This is the number one written in binary. Not coincidentally,
this is the position of the error: the first of the codeword was changed.

Let’s check this with another artificially introduced error. Let’s change bit
five of the codeword to get v = (1, 0, 1, 1,1, 1, 0). We find that

Hv =




1
0
1


 (26)

Tipping this vector on its side we get 101, which is 5 in binary. Again, that
gives the position of the error!

To prove that this is always the case, start with a codeword c and add to it
the vector ei that has a 1 in position i and zero elsewhere. This corresponds to
changing the bit in position i. Call the result v, so that v = c + ei. This is the
received message. Now we do a bit of matrix algebra. First, use the distributive
law:

Hv = Hc + Hei (27)

7



Then use the fact that Hc = 0 to get

Hv = Hei (28)

Now comes a little fact about matrices. The result of mutiplying a matrix by
a vector with a one in position i and zero elsewhere is the i-th column of the
matrix. But the i-th column of H, tipped on its side, is i written in binary form.
This proves what we set out to prove.

Problem 9 The message 1111101 was sent using the Hamming code. What
message was sent?

Problem 10 What is the minimum distance between vectors in the Hamming
code? Prove your answer to be correct.

Problem 11 Prove that if a code has minimum distance 2r + 1, then r errors
can be corrected.

4 Final remarks

There is a whole family of Hamming codes, and they can all correct single errors,
but no more. Codes developed later, like the Reed-Solomon codes, can correct
multiple errors and bursts of errors. They use somewhat more sophisticated
mathematics: finite fields Fq with q > 2 play an important role, as do the
associated polynomial rings Fq[x]. NASA uses a Reed-Solomon (RS) code with
q = 28 for deep-space communication, and other RS codes are used for compact
disk recording.

For more information, see the references below, especially [1], or the refer-
ences at

http://www.math.utah.edu/ugrad/colloquia/1999/1/

Also, this document and related information can be found at

http://www.math.utah.edu/hschool/carlson

We end with some rather open-ended problems.

Problem 12 Try to guess how the next Hamming code is defined.

Problem 13 The field F4 can be constructed by adjoining a new element to
F2, just like the complex numbers can be constructed from the reals by adjoining
a new element (

√
−1). Try find construct F4 by adjoining an element α such

that β2 + β + 1 = 0. Use this equation, the law a + a = 0, and the usual laws of
algebra to construct addition and multiplication tables for your version of F4.

Problem 14 The triple repeat code and the Hamming code are both examples
of perfect codes. This means that the entire message space Fn

2 is covered by
nonoverlapping balls of fixed radius around codewords. Can you find other per-
fect codes?

8



References

[1] Lindsay Childs, A Concrete Introduction to Higher Algebra, Second Edi-
tion, Springer-Verlag 1997

[2] R.W. Hamming, Error-detecting and error-correcting codes, Bell System
Technical Journal 29, pp 147–160 (1950)

[3] Samuel P. Morgan, Richard Wesley Hamming, 1915-1998, Notices of the
American Mathematical Society 45 no. 9, pp 972–977 (1998)

[4] C.E. Shannon, A mathematical theory of communication, Bell System
Technical Journal 27, pp 379–423, 623–656 (1948)

[5] Garding, L. and T. Tambour, Algebra for Computer Science

Jim Carlson
Department of Mathematics
University of Utah
Salt Lake City, Utah 84112

http://www.math.utah.edu/~carlson
carlson@math.utah.edu

9


